

INDEPENDENT TECHNICAL REPORT ON THE LOMONOSOVSKOYE IRON PROJECT, REPUBLIC OF KAZAKHSTAN

Prepared by Mining Associates Limited for KazaX Minerals Incorporated

Author:

Andrew J Vigar, BAppSc, FAusIMM, MSEG

Effective Date: 17 April 2014 Submitted Date 29 May 2014

TABLE OF CONTENT

1	SUMMARY	7
2	INTRODUCTION	15
	2.1 Issuer	15
	2.2 Terms of reference and purpose	
	2.3 Information used	
	2.4 Site visit by qualified persons	16
3	RELIANCE ON OTHER EXPERTS	17
4	PROPERTY DESCRIPTION AND LOCATION	18
•		
	4.1 Area of property	
	4.3 Tenure	
	4.4 Property ownership	
	4.5 Royalties and other agreements	
	4.6 Environmental liabilities	
	4.7 Permits and obligations	22
	4.7.1 Kazakhstan mining law	
	4.7.2 Lomonosovskoye subsoil use contract rights	
	4.7.3 Lomonosovskoye subsoil use contract obligations	
	4.7.4 Subsoil use licence extension and exploration programme	
	4.7.5 Assignment and transfer	
	4.7.6 Pre-emptive rights	
	4.7.7 Work programs4.7.8 Decommissioning	
	4.8 Other significant factors	
	4.8.1 Work program performance to date	
	4.8.2 Procurement requirements	
	4.8.3 Local content requirements	
5	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND	
P	HYSIOGRAPHY	26
	5.1 Topography, elevation and vegetation	
	5.3 Population and transport	
	5.4 Climate	
	5.5 Infrastructure	
_		
6	HISTORY	30
	6.1 Prior ownership	
	6.2 Previous exploration	
	6.2.1 Mapping	
	6.2.2 Geophysics	
	6.2.3 Drilling	
	6.2.4 Metallurgy and mineralogy	
	6.3.1 Mineral resource estimates	
	6.3.2 Comment of mineral resource estimates	
		41
7	n 4 - misionical production	<i>∆</i> 1
7	·	
	GEOLOGICAL SETTING AND MINERALIZATION	42
	GEOLOGICAL SETTING AND MINERALIZATION	42
	GEOLOGICAL SETTING AND MINERALIZATION	42 42
	GEOLOGICAL SETTING AND MINERALIZATION 7.1 Regional geology	42 42 42
	GEOLOGICAL SETTING AND MINERALIZATION	42 42 42 43

	7.3	Prospect geology	48
	7.3.1	1 Northwest Deposit	49
	7.3.2		
		•	
	7.4	Mineralization	
	7.4.1	1 Mineralization	53
	7.4.2	Phost rocks	55
	7.4.3		
	_		
	7.4.4		
	7.4.5	5 Dimensions and continuity	56
8	DEP	OSIT TYPES	58
	8.1	Classification	
	8.2	Valerianovskoe Arc Iron Skarns	59
9	EXP	LORATION	61
10	DRIL	_LING	62
	40.4	Assessment O. De Parl 199	~~
	10.1	Accuracy & Reliability	63
44	CARA	IPLE PREPARATION, ANALYSES AND SECURITY	C.E.
11	SAIVI	IPLE PREPARATION, ANALYSES AND SECURITY	65
12	DAT	A VERIFICATION	67
12	DAI	A VERIFICATION	67
	12.1	Data verification procedures	67
	12.1.		
	12.1.	.2 Independent samples	69
	12.1.		
	12.2	Limitations on verification	
	12.3	Opinion on adequacy of data	70
13	RAINI	ERAL PROCESSING AND METALLURGICAL TESTING	74
ıs	IVIIIVE	ERAL PROCESSING AND METALLURGICAL TESTING	<i>/</i> I
	13.1	Sample selection criteria	71
	13.2	Drill hole identification for metallurgical sampling	
	13.3	Sample preparation	72
	13.4	SGS mineral services preliminary results	73
14	MINE	ERAL RESOURCE ESTIMATES	74
	14.1	Approach	
	14.2	Supplied Data	75
	14.3	Dimensions	
	14.4		
		Cut-off grades	
	14.5	Geological and mineralization interpretation	77
	14.6	Data preparation and statistics	78
	14.6.	·	
	14.6.		
		, ,	
	14.6.	.3 Basic statistics	79
	14.6.	.4 Grade capping	81
	14.6.	11 0	
	14.7		
		Variography	
	14.7.		
	14.7.	.2 Variogram models – grade indicators	82
	14.7.		
	14.8		
	14.8.		
	14.8.	.2 Block Model and Panel Size	85
	14.8.		
	14.8.	•	
	14.8.	.5 Block model attributes	85
	14.8.	.6 Block model validation	86
	14.8.		
		Resource classification	
	14.5	DESCRIPE GRASHICAROR	CO

1	4.10 Resource summary	
1	4.11 Comparison with previous resource estimate	91
15	MINERAL RESERVE ESTIMATES	92
16	MINING METHODS	92
17	RECOVERY METHODS	92
18	PROJECT INFRASTRUCTURE	92
19	MARKET STUDIES AND CONTRACTS	92
20	ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT	92
21	CAPITAL AND OPERATING COSTS	92
22	ECONOMIC ANALYSIS	92
23	ADJACENT PROPERTIES	93
2	3.1 Geology and resources of adjacent ENRC deposits	95
	23.1.1 Kacharsky	96
	23.1.2 Sokolovsky 23.1.3 Sarbaisky	
2	3.2 Production from adjacent ENRC deposits	98
24	OTHER RELEVANT DATA AND INFORMATION	100
25	INTERPRETATION AND CONCLUSIONS	101
_	5.1 Interpretation	101
2	5.2 Conclusions	
26	RECOMMENDATIONS	103
2	6.1 Work program and budget	103
27	REFERENCES	105
28	DATE AND SIGNATURE PAGE	107
29	CERTIFICATES OF QUALIFIED PERSONS	108
30	GLOSSARY OF TECHNICAL TERMS	109
31	Appendix 1: Historical drill holes	112
Figu	Ires JRE 1: LOMONOSOVSKOYE PROJECT LOCATION	18
	JRE 2: LOMONOSOVSKOYE PROJECT TENEMENT (CONTRACT) MAP	
	JRE 3: LOMONOSOVSKOYE PROJECT CONTRACT LOCATION	
	JRE 4: LOMONOSOVSKOYE PROJECT REGIONAL LOCATION	
	JRE 5: RAINFALL, TEMPERATURE AVERAGES FOR LOMONOSOVSKOYE	
	JRE 6: 1984 COMPILATION MAP: AEROMAGNETIC AND GRAVITY REGIONAL SURVEY RESULTS JRE 7: HISTORICAL DRILLING - DRILL COLLAR LOCATIONS	
	JRE 7. HISTORICAL DRILLING - DRILL COLLAR LOCATIONS	
	JRE 9: HISTORICAL DRILLING - DRILL COLLAR LOCATIONS & LINES CENTRAL RESOURCE AREA	
	IRE 10: HISTORICAL DRILL COLLARS AND DRILL LINES – NORTHWEST AND CENTRAL DEPOSIT AREAS	
	JRE 11: AEROMAGNETIC AND GRAVITY SURVEY RESULTS AND 1982-84 DRILL COLLARS	
	JRE 12: LOMONOSOVSKOYE MINERALIZATION TYPES BY DEPOSIT	
	JRE 13: LOCATION OF THE URALS BETWEEN EUROPE & ASIA	
	JRE 14: TECTONIC ZONES	
	JRE 16: TECTONIC EVOLUTION OF URALIDES	
	JRE 17: IDEALISED STRATIGRAPHIC COLUMN OF VALERIANOVSKOE ARC	
г	JRE 18: SOKOLOVSKY & SARBAYSKY (SARBAI) – SIMPLIFIED GEOLOGY	47

FIGURE 19: GEOLOGICAL CROSS-SECTIONS OF SOKOLOVSK AND SARBAI MAGNETITE DEPOSITS	
FIGURE 21: OUTLINE OF MAGNETITE MINERALIZATION: NORTHWEST AND CENTRAL DEPOSITS	
FIGURE 22: DRILL LINE 417-421 CROSS SECTION, NORTHWEST AREA.	
FIGURE 23: DRILL LINE 434-324 CROSS-SECTION, CENTRAL AREA	
FIGURE 24: COMPARISON OF MINERALIZATION EVENTS BETWEEN THE NORTHWEST AND CENTRAL DEPOSIT	
FIGURE 25: PLAN AND LONG SECTION VIEW OF THE LOMONOSOVSKOYE IRON DEPOSIT	57
FIGURE 26: GENERAL PARAGENESIS FOR THE VALERIANOVSKOE IRON SKARNS	60
FIGURE 27: ALTERATION ASSEMBLAGES.	
FIGURE 28: HISTORICAL AND CURRENT DRILL COLLARS WITH 2012 DRILLING IN RED.	
FIGURE 29: HISTOGRAM COMPARISON OF OLD AND NEW IRON AND MAGNETITE	
FIGURE 30: Q-Q PLOTS FOR IRON AND MAGNETITE AT BOTH THE NORTHWEST (TOP LEFT AND RIGHT) AND	
CENTRAL (BOTTOM LEFT AND RIGHT) DEPOSITS	64
FIGURE 31: SAMPLING AND PROCESSING FLOW CHART	
FIGURE 32: COMPARISON OF 2012 DRILL PROGRAM IRON ASSAY RESULTS AGAINST HISTORICAL	
FIGURE 33: END OF YEAR 5 PRODUCTION (PERIOD 7) SCENARIO AND LOCATION OF BOREHOLE COLLARS	
FIGURE 34: PLAN VIEW OF THE DRILL HOLE DISTRIBUTION AND ESTIMATION DOMAINS	75
FIGURE 35: PROBABILITY PLOTS FOR NORTHWEST AND CENTRAL AREAS	
FIGURE 36: HISTOGRAM OF ALL SAMPLE LENGTHS FOR THE NORTHWEST AND CENTRAL DEPOSITS	
FIGURE 37: BASIC STATISTICS FOR CENTRAL DEPOSIT	80
FIGURE 38: BASIC STATISTICS FOR NORTHWEST DEPOSIT	81
FIGURE 39: THE TWO END MEMBER MODELS OF GRADE CORRELATION WITH A DOMAIN	84
FIGURE 40. ESTIMATION VALIDATION DOMAINS 1, 3, 4 AND 7	87
FIGURE 41: LINEAR REGRESSION PLOT FOR IRON (FE)	
FIGURE 42: PROJECT OVERVIEW, PLAN VIEW SHOWING DRILL TRACES, RESOURCE BLOCKS BY CATEGORY	
	89
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS	
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS	93
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS	93 94
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS	93 94
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos	93 94 98
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY	93 94 98
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT.	93 94 98
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES	93 94 98 26 29
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414.	93 94 98 26 29 29
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) — SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH — DRILL HOLE DDH-7-2.	93 94 98 26 29 67 68
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH.	93 94 98 26 29 67 68
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) — SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH — DRILL HOLE DDH-7-2.	93 94 98 26 29 67 68
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH.	93 94 98 26 29 67 68 68
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos PHOTO 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE.	93 94 98 26 29 67 68 68 69
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) — SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos PHOTO 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH — DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M.	93 94 98 29 29 67 68 69 69
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2 PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE – HISTORICAL DDH C21-2	93 94 98 29 29 67 68 69 69
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) — SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH — DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE — HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE — NEW HOLE DDH 7-2.	93 94 98 26 29 67 68 69 69
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE – HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE – NEW HOLE DDH 7-2. PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH.	93 94 98 26 29 67 68 69 69
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE – HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE – NEW HOLE DDH 7-2. PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH.	93 94 98 26 29 67 68 69 69
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. PHOTO 3: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE – HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE – NEW HOLE DDH 7-2. PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH. PHOTO 12: SSGPO SOKOLOVSKY OPEN PIT OPERATION.	93 94 98 26 29 67 68 69 69 69 95
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos PHOTO 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE – HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE – NEW HOLE DDH 7-2. PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH. PHOTO 12: SSGPO SOKOLOVSKY OPEN PIT OPERATION. Tables TABLE 1: LOMONOSOVSKOYE PROJECT TENEMENT SUMMARY.	93 94 98 26 29 67 68 69 69 69 94 95
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. PHOTO 3: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE – HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE – NEW HOLE DDH 7-2. PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH. PHOTO 12: SSGPO SOKOLOVSKY OPEN PIT OPERATION.	93 94 98 26 29 67 68 69 69 94 95
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) — SIMPLIFIED GEOLOGY AND CROSS SECTIONS. PHOTO 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH — DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE — HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE — NEW HOLE DDH 7-2. PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH. PHOTO 12: SSGPO SOKOLOVSKY OPEN PIT OPERATION. TABLE 1: LOMONOSOVSKOYE PROJECT TENEMENT SUMMARY. TABLE 2: LOMONOSOVSKOYE PROJECT TENEMENT SUMMARY. TABLE 2: LOMONOSOVSKOYE PROJECT TENEMENT CO-ORDINATES.	93 94 98 26 29 67 68 69 69 95 18 19
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. PHOTOS PHOTO 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT	93 94 98 26 29 67 68 69 69 95 18 19
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. PHOTOS PHOTO 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2 PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE – HISTORICAL DDH C21-2 PHOTO 10: MINERALIZED CORE – NEW HOLE DDH 7-2 PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH. PHOTO 12: SSGPO SOKOLOVSKY OPEN PIT OPERATION. Tables TABLE 1: LOMONOSOVSKOYE PROJECT TENEMENT SUMMARY TABLE 2: LOMONOSOVSKOYE PROJECT TENEMENT SUMMARY TABLE 2: LOMONOSOVSKOYE PROJECT TENEMENT CO-ORDINATES TABLE 4: DOWN HOLE GEOPHYSICAL LOGGING. TABLE 5: DRILL HOLE AND DRILL LINES NORTHWEST & CENTRAL DEPOSITS	93 94 98 26 29 67 68 69 69 95 18 19 21 31
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. PHOTOS PHOTO 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOCKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE – HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE – NEW HOLE DDH 7-2. PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH. PHOTO 12: SSGPO SOKOLOVSKY OPEN PIT OPERATION. Tables TABLE 1: LOMONOSOVSKOYE PROJECT TENEMENT SUMMARY. TABLE 2: LOMONOSOVSKOYE PROJECT TENEMENT CO-ORDINATES TABLE 3: ROYALTIES AND FEES. TABLE 4: DOWN HOLE GEOPHYSICAL LOGGING. TABLE 5: DRILL HOLE AND DRILL LINES NORTHWEST & CENTRAL DEPOSITS. TABLE 6: MINERALIZATION TYPES BY DEPOSIT.	93 94 98 26 29 67 68 69 69 95 18 19 21 31 34
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. PHOTOS PHOTO 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE – HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE – NEW HOLE DDH 7-2. PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH. PHOTO 12: SSGPO SOKOLOVSKY OPEN PIT OPERATION. Tables TABLE 1: LOMONOSOVSKOYE PROJECT TENEMENT SUMMARY TABLE 2: LOMONOSOVSKOYE PROJECT TENEMENT SUMMARY TABLE 2: LOMONOSOVSKOYE PROJECT TENEMENT CO-ORDINATES. TABLE 3: ROYALTIES AND FEES. TABLE 4: DOWN HOLE GEOPHYSICAL LOGGING TABLE 5: DRILL HOLE AND DRILL LINES NORTHWEST & CENTRAL DEPOSITS. TABLE 6: MINERALIZATION TYPES BY DEPOSIT. TABLE 7: 1984 HISTORICAL MINERAL RESOURCE ESTIMATE *	93 94 98 26 29 67 68 69 69 95 95 18 19 21 31 34 39 40
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. PHOTOS PHOTO 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE – HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE – NEW HOLE DDH 7-2. PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH. PHOTO 12: SSGPO SOKOLOVSKY OPEN PIT OPERATION. Tables TABLE 1: LOMONOSOVSKOYE PROJECT TENEMENT SUMMARY. TABLE 2: LOMONOSOVSKOYE PROJECT TENEMENT CO-ORDINATES. TABLE 3: ROYALTIES AND FEES. TABLE 4: DOWN HOLE GEOPHYSICAL LOGGING. TABLE 5: DRILL HOLE AND DRILL LINES NORTHWEST & CENTRAL DEPOSITS. TABLE 6: MINERALIZATION TYPES BY DEPOSIT. TABLE 6: MINERALIZATION TYPES BY DEPOSIT. TABLE 7: 1984 HISTORICAL MINERAL RESOURCE ESTIMATE * TABLE 8: RECONCILIATION OF CLASSIFICATIONS OF MINERAL RESERVES AND RESOURCES *	93 94 98 26 29 67 68 69 69 95 95 18 19 31 31 34 39 40
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOCKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE – HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE – NEW HOLE DDH 7-2. PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH. PHOTO 12: SSGPO SOKOLOVSKY OPEN PIT OPERATION. Tables TABLE 1: LOMONOSOVSKOYE PROJECT TENEMENT SUMMARY. TABLE 2: LOMONOSOVSKOYE PROJECT TENEMENT CO-ORDINATES. TABLE 3: ROYALTIES AND FEES. TABLE 4: DOWN HOLE GEOPHYSICAL LOGGING. TABLE 5: DRILL HOLE AND DRILL LINES NORTHWEST & CENTRAL DEPOSITS. TABLE 6: MINERALIZATION TYPES BY DEPOSIT. TABLE 7: 1984 HISTORICAL MINERAL RESOURCE ESTIMATE * TABLE 9. DRILLING STATISTICS FOR THE PROJECT.	93 94 26 29 67 68 69 69 95 18 19 21 31 34 39 40 41
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) — SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH — DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOOKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE — HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE — NEW HOLE DDH 7-2. PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH. PHOTO 12: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH. PHOTO 12: SSGPO SOKOLOVSKY OPEN PIT OPERATION. Tables TABLE 1: LOMONOSOVSKOYE PROJECT TENEMENT SUMMARY. TABLE 2: LOMONOSOVSKOYE PROJECT TENEMENT CO-ORDINATES. TABLE 3: ROYALTIES AND FEES. TABLE 4: DOWN HOLE GEOPHYSICAL LOGGING TABLE 5: DRILL HOLE AND DRILL LINES NORTHWEST & CENTRAL DEPOSITS TABLE 6: MINERALIZATION TYPES BY DEPOSIT. TABLE 7: 1984 HISTORICAL MINERAL RESOURCE ESTIMATE * TABLE 6: MINERALIZATION OF CLASSIFICATIONS OF MINERAL RESERVES AND RESOURCES * TABLE 9. DRILLING STATISTICS FOR THE PROJECT. TABLE 9. DRILLING STATISTICS FOR THE PROJECT. TABLE 10: SUMMARY TABLE OF THE ASSAY SUITES AND SAMPLES TAKEN FOR CURRENT DRILLING	93 94 98 26 29 67 68 69 69 95 95 18 19 31 31 34 39 40 41 62
(MEASURED (RED), INDICATED (ORANGE) AND INFERRED (GREEN) AND DOMAINS. FIGURE 43: ADJACENT PROPERTIES: SARBAISKY-SOKOLOSKY AND KACHARSKY IRON ORE MINES. FIGURE 44: LOMONOSOVSKOYE PROJECT LOCATION RELATIVE TO SARBAISKY OPEN PIT. FIGURE 45: SARBAISKY (SARBAI) – SIMPLIFIED GEOLOGY AND CROSS SECTIONS. Photos Photos Photo 1: LOMONOSOVSKOYE PROJECT AREA TOPOGRAPHY. PHOTO 2: SSGPO (ENRC) PELLET PLANT. PHOTO 3: SOKOLOVSKY RAILWAY ORE TRANSPORT. PHOTO 4: DRILL COLLAR OF HISTORICAL DDH 414. PHOTO 5: CORE RIG FACING NORTH – DRILL HOLE DDH-7-2. PHOTO 6: DRILL HOLE DDH-16-1, LOCKING NORTH. PHOTO 7: LOMONOSOVSKOYE PROJECT CORE STORAGE. PHOTO 8: DRILL CORE FROM DDH 16-1 AT ABOUT 280 M. PHOTO 9: MINERALIZED CORE – HISTORICAL DDH C21-2. PHOTO 10: MINERALIZED CORE – NEW HOLE DDH 7-2. PHOTO 11: SSGPO SOKOLOVSKY OPEN PIT OPERATION, FACING NORTH. PHOTO 12: SSGPO SOKOLOVSKY OPEN PIT OPERATION. Tables TABLE 1: LOMONOSOVSKOYE PROJECT TENEMENT SUMMARY. TABLE 2: LOMONOSOVSKOYE PROJECT TENEMENT CO-ORDINATES. TABLE 3: ROYALTIES AND FEES. TABLE 4: DOWN HOLE GEOPHYSICAL LOGGING. TABLE 5: DRILL HOLE AND DRILL LINES NORTHWEST & CENTRAL DEPOSITS. TABLE 6: MINERALIZATION TYPES BY DEPOSIT. TABLE 7: 1984 HISTORICAL MINERAL RESOURCE ESTIMATE * TABLE 9. DRILLING STATISTICS FOR THE PROJECT.	93 94 26 29 67 68 69 69 95 18 19 31 34 39 40 41 34 34 41 42

Table 14: Database Extents	76
TABLE 15: BASICS STATISTICS FOR 5 M COMPOSITES BY DOMAIN	80
Table 16: Grade capping	81
Table 17: Variogram parameters by domain - grade indicators	82
Table 18. Variogram parameters by domain – Fe %	
Table 19. Variogram parameters by domain – Femag %	83
Table 20: Block Model Dimensions	
Table 21. Search ellipse orientations and distances	
Table 22: Block Model Attributes	86
Table 23: Mineral Resource Estimate for Combined Lomonosovskoye, Effective Date of App	RIL
17, 2014, Cut-off 20% Fe	
Table 24: Mineral Resource Estimate for Combined Lomonosovskoye, Effective Date of App	
17, 2014, Cut-off 20% Fe	
Table 25: Informing sample statistics, high and low grade sub-domains	
Table 26: Mineral Resource Estimate for Combined Lomonosovskoye December 2012, cut-oi	
20% FE	
Table 27: Kacharsky - Ore Reserves and Mineral Resources -1 July 2007	
Table 28: Sokolovsky - Ore Reserves and Mineral Resources -1 July 2007	
Table 29: Sarbaisky - Ore Reserves and Mineral Resources -1 July 2007	
Table 30: Production Statistics for the adjacent SSGPO Mining Operations	
Table 31: Weight recovery of concentrate for the adjacent SSGPO Mining Operations	
Table 32: Mineral Resource Estimate for Combined Lomonosovskoye, Effective Date of App	
17, 2014, Cut-off 20% Fe	
Table 33. 2014 Budget	. 104

1 SUMMARY

This report is a description of the Lomonosovskoye Iron Project ("the Lomonosovskoye Project" or "the Project") in the Republic of Kazakhstan prepared by Mining Associates Limited ("MA"). At the request of Mr. Juan Camus, Country Manager of KazaX Minerals Incorporated ("KMI" or the "Company"), MA was commissioned in November 2013 to prepare a revised mineral resource estimate and Independent Technical Report on the Lomonosovskoye Project in compliance with the requirements of Canadian National Instrument 43-101 – Standards of Disclosure for Mineral Projects ("NI43-101"). The revised estimate for the Lomonosovskoye Project is based on the same drill database as used in the report prepared in compliance with National Instrument 43-101 - Standards of Disclosure for Mineral Projects ("NI 43-101"), which was dated December 18, 2012 (and resubmitted on SEDAR on May 9, 2013) (the "December 2012 report"), but with a re-interpretation of the geological and geophysical data and an estimation method that includes an allowance for bulk open-pit or underground mining. MA has been providing technical advice to the project since October 2011.

MA has based this report on information provided by KMI; third party technical reports; a data audit; geology models and resource estimates completed by MA using both historical and recent drilling; and a site visit by the Qualified Person ("QP") in March 2012 and December 2013.

Description and Location

The Lomonosovskoye Iron Project is located in the northwest corner of the Republic of Kazakhstan in the Kostanay Region, 618 km northwest of the country's capital of Astana and 50 km west-southwest of the regional capital of Kostanay. It is centred at latitude 53° 02' N and longitude 62° 53' E. The Project area lies 15 km northwest of the town of Rudniy. Primary access to the site is by highway from Kostanay to Rudniy and then sealed road to Lomonosovskoye.

The Project topography is flat lying and has a continental climate of short relatively warm summers and longer very cold winters. The Project is located close to the town of Rudniy and the significant iron mining-processing operations of the Sokolovsky-Sarbaisky Ore Mining and Processing Association ("SSGPO"), a subsidiary of Eurasian Natural Resources Corporation PLC ("ENRC"). The area has considerable industrial infrastructure related to the activities at SSGPO.

Tenure

The rights to explore and mine iron ore at the Lomonosovskoye Project are held under Subsoil Use Contract # 3151 owned by Lomonosovskoye Limited Liability Partnership ("LLLP"), a 100% subsidiary

of Safin Element GmbH ("Safin"), granted in March 2009 for 21 years, but extendable. According to the Legal Opinion given by GRATA Law Firm LLP, the Subsoil Use Contract has been issued to LLLP in adherence to all the procedural rules and the Subsoil Use Contract remains issued to LLLP as of 14 November 2011.

The indirect acquisition by KMI of a 74.99% interest in LLLP from Safin was completed on 15 February 2013 pursuant to a share purchase agreement ("SPA") signed on 19 December 2011. The current ownership of LLLP is as follows:

- a) KMI @ 74.99% (through its Austrian subsidiary, Kazco Beteiligungs GmbH);
- b) Safin @ 0.01%; and
- c) Tobol @ 25%.

The Subsoil Contract is registered to LLLP having been officially transferred from the original registrant, Tobol, on 31 July 2009. According to the Legal Opinion, as at the date thereof, the sole holder of participations in the capital of LLLP was Safin, a company registered under the laws of the Republic of Austria.

The SPA originally contemplated the indirect acquisition by KMI of a 99.9% legal interest and a 100% beneficial interest in LLLP by Newbridge (subsequently renamed KazaX Minerals Inc.) from Safin. The SPA was subject to conditions precedent, including government regulatory approval. Subsequently, the SPA was varied to contemplate the indirect acquisition by KMI of a 74.99% legal and beneficial interest in LLLP for aggregate consideration of US\$56,383,200 to be satisfied through a combination of cash payments and issuances of common shares of KMI ("Common Shares") to Safin.

As of the effective date of this report, KMI has made cash payments totalling approximately \$8.9 million and issued approximately 75.5 million Common Shares pursuant to the terms of the SPA. The future cash consideration due under the SPA is approximately \$22.82 million.

As of the effective date of this report, KMI and Safin are in discussions to revise the schedule for the cash payments remaining under the SPA.

In the event that KMI does not complete the cash payments to Safin, in full or in part, in accordance with the terms of the SPA, KMI is required to transfer back to Safin the unpaid portion of its interest in LLLP on a pro rata basis.

History and Drilling

Iron mineralization was discovered in the region in 1949. The Lomonosovskoye Project has been subject to various geophysical and drilling surveys from 1951 through to 1984 during, which time several mineral resource estimates were conducted.

Some 412 diamond drill holes for a total meterage drilled of 131,441 m were recorded in the database for the Contract area prior to the current drilling, of which 190 drill holes were angled holes.

A further twenty two (22) drill holes were completed in 2012 for a total of 9,049 m, selected and supervised by MA and assayed by KMI to validate the historical drilling and for this resource estimate. A further forty (40) drill holes were drilled in 2013 for a total of 11,580.8 m. Twenty two of these holes were for hydrological and geotechnical studies. The final results from the 2013 drilling were not available for inclusion in this revised mineral resource estimate.

The last historical estimate was compiled after completion of drilling in 1984, and totalled 333 Mt at an average grade of 34.2% Fe, using a 20% Fe cut-off, which was classified under the Kazakhstan classification system as C1 and C2 categories. The figures quoted above are regarded as historical by MA (as they are pre-2000) and have been superseded by the estimates reported here and in the December 2012 report. It is MA's opinion that the 1984 historical mineral resource estimates have been largely verified by the new drilling and estimates and are quoted here to provide context only.

Geology and Mineralization

The Lomonosovskoye Project iron deposits, along with a number of other significant magnetite deposits, occur in the Turgai belt of the regional Valerianovskoe magmatic arc in northern Kazakhstan. Magnetite deposits of the Valerianovskoe magmatic arc are hosted by andesitic volcanics, pyroclastics, and intercalated sediments and carbonates of the Valerianovo supergroup. Large gabbro-diorite-granodiorite igneous bodies of the Sarbai-Sokolovsk and Sulukolskaya complexes are related to the mineralization, with granitic facies interpreted as having been intruded from Mid-Visean to Permian period. In some deposits, the host sedimentary sequence is cross cut by post-mineralization dioritic porphyry. The Palaeozoic units of the Turgai belt in Kazakhstan are entirely covered by Mesozoic to Cainozoic sediments which are from 40 m to 180 m in thickness.

The Lomonosovskoye deposits and other magnetite deposits in the Valerianovksoe arc are generally referred to as iron skarn deposits. Skarns result from the early high temperature alteration of limestone (or other carbonate rocks) resulting in a mineralogy dominated by calc-silicate minerals such as garnet and pyroxene, and various metallic minerals such as iron, gold, copper, zinc, tungsten, molybdenum and tin. In this case the dominant mineralization mineral is iron.

The Lomonosovskoye Project comprises two deposits split into seven estimation domains: two domains in the North-Western ("NW" or "Northwest") Deposit and five domains in the more complex Central Deposit. The domains differ in geometry but are broadly similar in geological structure, genesis and composition of mineralization, although emphasis of particular mineralization styles changes between domains. The domains are impacted by, and to some extent defined by, diorite dykes and intrusions as well as faulting.

Project Overview in plan view.

Drill traces in green, resource blocks coloured by domain

The Northwest Deposit contains stratabound magnetite mineralization along the contact between lower sedimentary (limestone) and upper volcanic-sedimentary (tuffite) members of the Sokolovsky

suite. The mineralization is enclosed by an envelope of garnet-pyroxene skarns and forms a single skarn-mineralization zone that can be traced over 1,200 m along strike in a south-western direction, and down dip to a depth of 1,600 m with an average mineralization body thickness of about 100 m.

The Central Deposit has a complex multi-domain structure due to the widespread influence of diorite intrusions and faulting. Mineralization is defined by gradation in intensity from full skarn replacement to disseminated and partial replacement. The border between them is determined by chemical composition. Mineralized bodies are predominately of seam-like and lenticular shape. Dip angles vary from vertical to 30° for individual mineralized bodies. Average thickness of mineralized bodies is highly variable. The Central Deposit is more irregular that the Northwest Deposit but mineralization is contained within an area is traced along strike over 2,300 m and to a depth of 200 to 600 m in the north, and to 800 m in the south, although depth extent is poorly tested in most areas due to the complexity of the deposit.

Mineralized bodies at Lomonosovskoye consist of a gradation from massive magnetite to disseminated and/or vein magnetite. The boundary between massive and disseminated/vein mineralization is sometimes difficult to identify as dense disseminations of magnetite grade into massive. Massive mineralization is defined as being 50% or greater iron content. Hematite is also present.

Seven types of mineralization have been recognized at Lomonosovskoye and both zones share similar mineralization types, although dominance changes from area to area.

2012 drilling included assay by modern methods and the results compared favourably with the historical data set. This assay included measurement of the magnetite content by the internationally recognised Davis Tube method at laboratories in the USA.

In terms of deleterious elements, historical metallurgical and mineralogical work indicated variations in mineralization type between the 2 deposits with sulphur content averaging 2.9% in Northwest and 3.5% in Central, and phosphorus content averaging 0.07%-0.08% and 0.34%-0.45% respectively. Silica values are not reported in the historical mineral resource estimate.

The current estimate confirms these historical figures with a variation in deleterious elements with sulphur in the Northwest averaging 3.54% and phosphate 0.09% whereas Central sulphur is lower at 2.79% but phosphate is substantially higher at 0.50%.

In addition, it was noted that the paleosurface weathering profile may impact iron mineralization up to 100 m depth below that surface, although affected areas near the contacts are poorly drilled.

Resource Estimation

The revised estimate for the Lomonosovskoye Project is based on the same drill database as used in the report prepared in compliance with National Instrument 43-101 - Standards of Disclosure for Mineral Projects ("NI 43-101"), which was dated December 18, 2012 (and resubmitted on SEDAR on May 9, 2013) (the "December 2012 report"), but with a re-interpretation of the geological and geophysical data, the addition of further assays from some un-sampled intervals and an estimation method that includes an allowance for bulk open-pit or underground mining. This better understanding of the geology and mineralization controls and additional definition provided by the down-hole geophysics has allowed an increase in the confidence levels of the estimates.

The new mineral resource estimate is outlined below, above a cut-off grade of 20% Fe:

Mineral Resource Estimate for Combined Lomonosovskoye,											
Effective Date of April 17, 2014, Cut-off 20% Fe											
Class Mt Fe % P % S % FeM %											
Measured	63.9	30.5	0.29	3.01	21.30						
Indicated	414.2	30.6	0.22	3.3	21.04						
Measured & Indicated 478.1 30.5 0.23 3.3 2											
Inferred	28.4	28.0	0.28	3.04	16.71						

The current resource estimate is based on holes drilled and assays received up to 23 November 2012. The magnetic anomaly contours and historical geological cross sections were used to constrain and extend the resource estimation domains up to 50 m beyond last drill hole, where reasonable. Three dimensional wireframes were constructed for each domain guided by 5 m bench composites, down hole magnetic susceptibility data, newly translated lithology logs and magnetic and gravity maps. Interpretations at a 10% Fe cut-off grade were made for the Northwest Central deposits.

Assay results were composited to 5 meter intervals down-hole within domains. Fe assay results were capped at the 99.5 percentile for the Northwest Deposit and 99.9 percentile for the Central Deposit while no capping was required for the magnetite content. The Block Model extents cover the combined Northwest and Central deposits, with a block size of 15mN x 15mE x 10mRL, without subblocking to reflect block open-pit or underground. An indicator approach was used to select blocks with a greater than 40% probability of being above a cut-off grade of 20% Fe within domains. Grade was interpolated into a constrained block model using all 5 m sample composites within above or below 20% Fe blocks, including samples with a value below or above 20% Fe respectively. This is considered to represent the true "mining block" grade, including both internal and edge dilution. Ordinary Kriging estimation technique with anisotropy was applied.

Maximum search was varied by domain, from 150 m to 300 m with 3 to 24 informing samples. Density was calculated using the following formula: density = 0.0213 x Fe content + 2.74, taken from a linear regression plot for density against Fe content for over 3,000 samples. Resources are reported above 20% Fe for both zones.

Where reference is made in the table above to "Inferred", this refers to within domain wireframes and with at least three informing samples. Where reference is made in the table above to "Indicated", this refers to within domain wireframes and the maximum of 24 informing samples and Krig Slope greater than 0.1. Where reference is made in the table above to "Measured", this refers to within domain wireframes and the maximum of 24 informing samples and a Krig Slope greater than 0.5.

The new estimate represents an increase in tonnage of 45% and an increase in contained iron of 25% in the measured and indicated mineral resource categories over the estimates included in the December 2012 report. The changes from the estimates in the December 2012 report relate to increased confidence levels, as well as changes in the estimation methodology. As a result of new assay information from old drill hole samples, which filled some unsampled intervals in the database, and the use of the down-hole geophysical data to better define low-grade areas, the inclusion of mining dilution within the mining blocks has increased tonnage without a corresponding loss of contained metal at an unchanged cut-off grade of 20% Fe; nevertheless, the overall effect has been to lower the average grade of estimated mineral resources.

Ongoing Activities

In conjunction with the current ongoing drilling program and metallurgical testwork, KMI has engaged Wardell Armstrong International as lead technical consultant to coordinate a Definitive Feasibility Study (DFS) on the Project. The DFS is expected to be completed by the end of 2014. Wardell Armstrong International is an independent mining consultancy providing specialized geological, geotechnical and hydrogeological mining advice as well as bringing environmental and social experience to mining projects worldwide across all commodities.

Recommendations and Conclusions

The Lomonosovskoye Project contains significant magnetite iron mineralization in two deposits comprised of seven adjacent domains which have similar geological settings to the nearby operating magnetite iron ore open pit and underground mines in the Rudniy region.

Historical work to date has outlined skarn iron mineralization at the Northwest Deposit and the Central Deposit beneath 100 m of overburden and extending to 1600 m depth in the Northwest Deposit, and some 900 m at Central. The drilling available consisting of twenty two (22) drill holes totalling 9,049 m has allowed for confirmation of the historical drilling and for the deposit to be better understood and

extended in area leading to this resource estimate but still remains open at depth and in the poorly drilled and structurally complex region between the Northwest and Central deposits.

The revised estimate effective date April 17, 2014, is based on the data set used in the December 2012 report, with additional assaying of stored samples and interpretation of down-hole geophysical logs. It is expected that drilling completed in 2013 and 2014 will be included in the next update.

It is MA's opinion that the mineral resource estimates included in the December 2012 report have been largely verified by the new estimates, with the changes in tonnage and grade reflecting increased confidence and the use of an estimation methodology better suited to bulk surface and underground mining. The new estimates are fully diluted for internal and edge mining dilution.

The mineralization domains were redefined by 3D wireframes using drill assay data, detailed geology logs and down-hole magnetic susceptibility logs. The deposit was divided into blocks above and below 20% Fe using an indicator approach. Grades and mineralization percentages were then estimated by Ordinary Kriging into blocks 15x15x10m in size within each domain.

While there have been a number of metallurgical programs through the history of the project, further metallurgical testing will be required regardless of the historical metallurgical results. MA notes the presence of significant hematite as well as magnetite at several locations and this will need to be taken into account in the plant design. A metallurgical program is currently being undertaken by KMI with results expected in 2014.

MA notes that the Lomonosovskoye Project has a favourable location due to its proximity to transportation routes, and sources of water, gas, and power supply, which have been established with the regional mining complex based in Rudniy. This may allow a reduction in capital expenditure and may reduce the cost of production if the project proceeds to development through the use of shared infrastructure.

The Legal Opinion states that there is a remote risk of the Competent Authority will not approve the transfer of Subsoil Use Contract rights. MA believes the revised ownership structure has largely offset this risk.

In terms of to the project's potential economic viability, as the Project is considered to be in Advanced Exploration stage prior to Preliminary Economic Assessment, it is not at a stage to discuss risk in terms of potential economic viability. There are however reasonable prospects of eventual economic extraction by combined open pit and underground methods.

The QP makes the following observations and conclusions regarding the Lomonosovskoye Project:

- Significant skarn type iron mineralization exists at the Lomonosovskoye Project.
- The mineralization occurs in 3 main types disseminated, veins and massive.
- The deposit remains open at depth and along the lateral extents in certain areas as well as being under-drilled in the mid portion between the Northwest and Central deposits. This area is currently being tested with diamond drilling.
- The resource estimates will be updated based on the results of the drilling program currently underway.
- Following a more rigorous and reliable testing of density, a calculated density has been applied to iron bearing blocks within the block model rather than fixed values as in the past.
- The Lomonosovskoye Project has a very favorable location due to its proximity to transportation routes and infrastructure.
- The historical drill-holes have been validated by a current drilling program and close examination of the statistics between old and current drilling has deemed that the historical holes are suitable to be included in this resource estimate.
- The techniques applied in the sampling, logging and storing of core are deemed appropriate QA/QC procedures and standards.
- The deposit remains open at depth and along the lateral extents in certain areas as well as being under-drilled in the mid portion between the Northwest and Central deposits.

• Selective sampling within mineralized zones has required a weighting factor to be applied to the estimation model; future drilling should be fully sampled within the interpreted mineralized zone to fill in these gaps and allow estimation of the waste as well as mineralization.

MA recommends the following activities be conducted to improve the accuracy of future mineral resource estimates and thus reserves, mine design and production schedules:

- Review paleo-weathering depth profile and effects at the top of mineralization, particularly on magnetite. This may be achieved by close spaced micro-seismic or georadar;
- Validation drilling to include more twinned holes to allow direct comparison with historical holes. Twin hole selection should pick historical holes which have reliably stored core;
- Evaluate historical holes which display no assay results and determine whether assays are available and missing or whether resampling can be carried out to further enhance the model.
- Further infill drilling is required in areas that are poorly sampled or under drilled in order to close out the deposit and improve the weighting of samples within the model.;
- To gain further confidence in the interpretation and improve the volume of the measured category for the first few years of planned production, the line spacing of 100 m should be closed to 50 m.;
- Drilling should also be focused on those areas that are likely to provide the limits to mine
 design, e.g. where the mineralization envelope cuts the walls of the potential pit.
- Develop and implement rigorous QAQC procedures for all new drilling including down hole geophysics.
- Investigate benefit 3D geophysical inversion modeling of ground magnetic data to ensure resources are fully closed off and target other mineralization.

Proposed Work Program & Budget

KMI has developed a US\$13M work program for 2014. The work program consists of ongoing drilling, technical studies, a Definitive Feasibility Study (DFS) and commencement of construction on the Project.

The 2013-2014 drilling program is designed for the purpose of geotechnical, hydrology and resource definition and comprises 68 boreholes totalling approximately 15,600 m. Of the planned 68 boreholes, 29 are exploration boreholes measuring approximately 11,200 m, 28 are geotechnical boreholes measuring approximately 3,400 m, and 11 are hydrogeological boreholes measuring approximately 1,000 m.

The DFS is being coordinated by Wardell Armstrong LLP as lead technical consultant and is expected to be completed by the end of 2014. Wardell Armstrong International is an independent mining consultancy providing specialized geological, geotechnical and hydrogeological mining advice as well as bringing environmental and social experience to mining projects worldwide across all commodities. The full scope of work for the DFS includes:

- review of the geological data and preparation of an updated resource model;
- technical support to all site investigation works including geological, hydrogeological, and geotechnical drilling;
- geotechnical analysis and design for the open pit slopes and waste dump;
- hydrogeological and site water balance modelling;
- design of the tailings storage facility;
- ESIA management and social impact assessment;
- mine closure and rehabilitation planning;
- ore reserves, life of mine plan, mining method and optimisation;
- · metallurgical testwork and process and plant design;
- project infrastructure planning;

- CAPEX/OPEX costing development and benchmarking;
- project financial modelling, analysis and market studies; and
- preparation of the DFS document.

2014 Budget	
Description of works	\$1,000's
Drilling work (Drilling works 2013 budget: \$1.77M)	712.2
Geophysical survey	278.9
Hydrogeological works	175.78
Samples preparation	74.7
Topographical linkage of wells	0.8
Laboratory works	750.1
Feasibility study of Industrial condition	192.5
Preparation of Mining Plan and Feasibility study (inter standards),	1,689.6
Supervision of exploration programme	241.4
Preparation and Independent expertise of Project Documents	390.0
Construction works	5,097.4
Indirect costs	3,185.0
Taxes and assignments	462.9
Total cost of works	13,251.0

MA considers the budget reasonable for the work planned and sufficient to achieve the planned objectives.

Andrew James Vigar BAppSc Geo, FAusIMM, MSEG Qualified Person

Hong Kong

Effective Date: 17 April 2014 Submitted Date 29 May 2014

2 INTRODUCTION

2.1 Issuer

This report, prepared for KazaX Minerals Incorporated ("KMI"), is an independent technical review of the geology, exploration and current mineral resource estimates for the Lomonosovskoye Iron Project located in the Republic of Kazakhstan.

KMI is a public listed company trading on the TSX Venture Exchange and is engaged in the development of natural resource projects.

2.2 Terms of reference and purpose

At the request of Mr. Juan Camus, Country Manager of KMI (or "The Client"), MA was commissioned in November 2013 to prepare a revised resource estimate and Independent Technical Report on the Lomonosovskoye Iron Project located in Kazakhstan.

KMI intends that this report be used as an Independent Technical Report as required under Part 4 "Obligation to File a Technical Report", of Canada's National Instrument 43-101 Standards of Disclosure for Mineral Projects ("NI43-101").

At KMI's request, the scope of MA's inquiries and of the report included the following:

- Site visit to the project site
- Preparation of a NI43-101 Independent Technical Report
- Revised Mineral Resource Estimate based on data received up to 23 November 2012

2.3 Information used

This report is based on technical data provided by KMI to MA. KMI provided open access to all the records necessary, in the opinion of MA, to enable a proper assessment of the project. MA used the following report as the primary source for descriptions of historical mineral resources:

IMC Montan, 2010, Investment Analysis and Exploration Study on the Mine Construction Project at Lomonosovskoye Iron Ore Deposit, Kostanay Region, Republic of Kazakhstan, dated July 2010, prepared for LLP "Lomonosovskoye" by IMC Montan (IMC Group Consulting Limited, International Economic and Energy Consulting Limited DMT GmbH).

KMI has warranted in writing to MA that full disclosure has been made of all material information and that, to the best of the KMI's knowledge and understanding, such information is complete, accurate and true. Readers of this report must appreciate that there is an inherent risk of error in the acquisition, processing and interpretation of geological and geophysical data.

Additional relevant material was acquired independently by MA from a variety of sources. The list of references at the end of this report lists the sources consulted. This material was used to expand on the information provided by KMI and, where appropriate, confirm or provide alternative assumptions to those made by KMI.

Six weeks were spent on data collection and analysis and preparation of this report.

Geological information usually consists of a series of small points of data on a large blank canvas. The true nature of any body of mineralization is never known until the last tonne of material has been mined out, by which time exploration has long since ceased. Exploration information relies on interpretation of a relatively small statistical sample of the deposit being studied; thus a variety of interpretations may be possible from the fragmentary data available. Investors should note that the statements and diagrams in this report are based on the best information available at the time, but may not necessarily be absolutely correct. Such statements and diagrams are subject to change or refinement as new exploration makes new data available, or new research alters prevailing geological concepts. Appraisal of all the information mentioned above forms the basis for this report. The views

and conclusions expressed are solely those of MA. When conclusions and interpretations credited specifically to other parties are discussed within the report, then these are not necessarily the views of MA.

2.4 Site visit by qualified persons

The summary review of geology and resource models and estimates was conducted by Mr Andrew Vigar the QP. Mr Vigar conducted a site visit from 26th to 30th March 2012. The visit consisted of visiting the laboratory in Karaganda, visiting the drill site of the current confirmation drilling program, inspecting drill core and the core storage in Rudniy and talking to the site geologists Sergey Debrov and Genadyi Shistak. The site visit was also to determine the competence of the laboratory tendered to do the geological test works, their methods and inspect equipment possessed by the lab. The Karaganda lab was proposed to conduct the geological assaying for the project's requirements, however, it was decided following the visit that the laboratory was unable to meet the international standards required and a second laboratory in Moscow, (Stewart Group) was chosen instead.

Mr Vigar conducted a site visit from 3rd December to 9th December 2013. Time was spent with the site geologists to discuss and understand in detail the geology and problems associated with sampling, preparation, its logistics and requirements of Kazakh and international certified laboratory analyses.

Mr Vigar is a Fellow of The Australasian Institute of Mining and Metallurgy (Melbourne) and a Member of the Society of Economic Geologists (Denver).

Mr Vigar has sufficient experience which is relevant to the iron style of mineralization and deposits under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (Australia). Mr Vigar is a Qualified Person as defined in NI43-101 (Canada).

Mr Vigar is employed by Mining Associates Limited of Hong Kong.

3 RELIANCE ON OTHER EXPERTS

The opinions expressed in this report have been based on information supplied to MA by KMI, its associates and their staff, as well as various government agencies including the various government departments related to mineral resource and exploration in Kazakhstan. MA has exercised all due care in reviewing and compiling the supplied information. Although MA has compared key supplied data with expected values with other similar deposits, the accuracy of the results and conclusions from this review are reliant on the accuracy of the supplied data. MA has relied on this information and has no reason to believe that any material facts have been withheld, or that a more detailed analysis may reveal additional material information.

The author has relied wholly on the legal opinion given by GRATA Law Firm LLP in respect of Subsoil Use Contract of Lomonosovskoye LLP, ("the Legal Opinion") in the content of Section 4.3 to 4.8. The Legal Opinion is dated 27 January 2012 and is titled "Legal Opinion in respect of Subsoil Use Contract of Lomonosovskoye LLP". It is an unpublished letter from A Daumov of GRATA Law Firm LLP to TSX Venture Exchange, KMI Capital Inc. and Maitland & Company.

The author has not relied on reports, opinions or statements of legal or other experts who are not Qualified Persons for information concerning legal, environmental, political or other issues and factors relevant to this report.

4 PROPERTY DESCRIPTION AND LOCATION

4.1 Area of property

The Lomonosovskoye contract area covers 31.83 km².

4.2 Property location

The Lomonosovskoye Project is located in the northwest corner of the Republic of Kazakhstan in the Kostanay Region, 618 km northwest of the country's capital of Astana and 50 west-southwest of the regional capital of Kostanay (Figure 1). It is centred at latitude 53° 02' N and longitude 62° 53' E (Figure 1). The Project area lies 15 km northwest of the town of Rudniy.

Figure 1: Lomonosovskoye Project Location (Source: after CIA Factbook)

4.3 Tenure

The rights to explore and mine iron ore in the Lomonosovskoye area are held under Subsoil Use Contract # 3151 ("the Subsoil Use Contract") with the Republic of Kazakhstan Ministry of Power Supply and Mineral Resources and originally registered to Joint Stock National Company Social Business Corporation Tobol in 20 March 2009. The contact was amended in 2009 and Lomonosovskoye Limited Liability Partnership ("LLLP") became the registered holder.

Table 1: Lomonosovskoye Project Tenement Summary										
Tenement	Contractor	Interest 25%	Area (km²)	Date Registered/ Amended	Date Expiry	Commodity				
Contract # 3151	JSNCSBC Tobol * Safrin Element G.m.b.H. (Austria)	25% 75%	31.83	20/03/2009	19/03/2030	Iron				
Contract # 3151 amended	LLLP **	100%	31.83	28/12/2010	19/03/2030	Iron				

^{*} JSNCSB Tobol = Joint Stock National Company Social Business Corporation Tobol

According to the Legal Opinion, the Subsoil Use Contract has been issued to LLLP in adherence to all the procedural rules in respect of the submission of documents and information; and the Subsoil Use Contract remains issued to LLLP as of 14 November 2011, the date of the relevant comfort letter was provided by the Competent Authority. The Subsoil Use Contract was registered with the Competent Authority as of 14 November 2011. With the exception on the underperformance of expenditure noted

^{**} LLLP = Lomonosovskoyee Limited Liability Partnership

in Section 4.8, LLLP has made all such expenditures to keep the Subsoil Use Contract in good standing with the Competent Authority and has complied with all requirements to date under the Subsoil Use Contract.

The Subsoil Use Contract is for 21 years, with the first 5 years for exploration, and 16 for extraction; with up to 4 years extension for the exploration period. The extraction period is also extendable. The 5 year of exploration period is from 20 March 2009 to 20 March 2014. The Subsoil Use Contract expires either upon expiration of exploration period if no commercial discovery has been made or on 20 March 2030, unless prolonged by agreement of the parties. The exploration stage under the Subsoil Use Contract maybe prolonged not more than 2 times with 2-year periods and the period necessary for assessment of commercial discovery

The contract tenement has an area of 31.83 km2. The location co-ordinates are listed in Table 2 and outlined in Figure 2 and Figure 3.

Table 2: Lomonosovskoye Project Tenement Co-ordinates											
Corner Point No.	Northern Latitude	Eastern Longitude									
1	53 03' 54"	62 50′ 40"									
2	53 03′ 54"	62 54' 08"									
3	53 04' 49"	62 54' 54"									
4	53 05′ 02"	62 55′ 37"									
5	53° 03′ 54"	62° 56′ 19"									
6	53° 01′ 26"	62° 56′ 19"									
7	53° 01′ 26"	62° 50′ 40"									

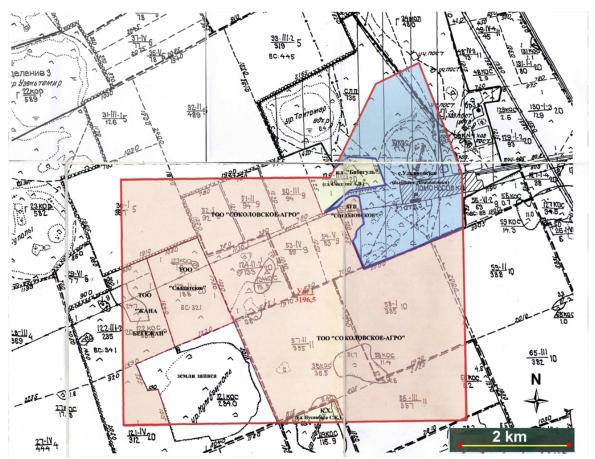


Figure 2: Lomonosovskoye Project Tenement (Contract) Map (Source: LLLP 2011)

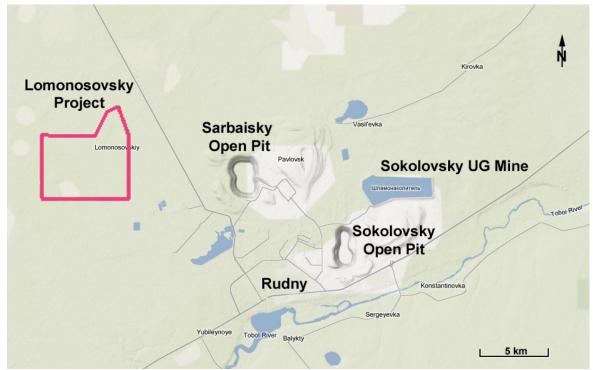


Figure 3: Lomonosovskoye Project Contract Location (Source: Google Maps 2011)

Aside from a review of the Legal Opinion, MA has not undertaken any title search or due diligence on the tenement titles or tenement conditions and the tenement's status has not been independently verified by MA.

4.4 Property ownership

The mining license (Subsoil Use Contract) is held by LLLP. The indirect acquisition by KMI of a 74.99% interest in LLLP from Safin was completed on 15 February 2013 pursuant to a share purchase agreement ("SPA") signed on 19 December 2011. The current ownership of LLLP is as follows:

- d) KMI @ 74.99% (through its Austrian subsidiary, Kazco Beteiligungs GmbH);
- e) Safin @ 0.01%; and
- f) Tobol @ 25%.

The Subsoil Contract is registered to LLLP having been officially transferred from the original registrant, Tobol, on 31 July 2009. According to the Legal Opinion, as at the date thereof, the sole holder of participations in the capital of LLLP was Safin, a company registered under the laws of the Republic of Austria.

The SPA originally contemplated the indirect acquisition by KMI of a 99.9% legal interest and a 100% beneficial interest in LLLP by Newbridge (subsequently renamed KazaX Minerals Inc.) from Safin. The SPA was subject to conditions precedent, including government regulatory approval. Subsequently, the SPA was varied to contemplate the indirect acquisition by KMI of a 74.99% legal and beneficial interest in LLLP for aggregate consideration of US\$56,383,200 to be satisfied through a combination of cash payments and issuances of common shares of KMI ("Common Shares") to Safin.

As of the effective date of this report, KMI has made cash payments totalling approximately \$8.9 million and issued approximately 75.5 million Common Shares pursuant to the terms of the SPA. The future cash consideration due under the SPA is approximately \$22.82 million.

As of the effective date of this report, KMI and Safin are in discussions to revise the schedule for the cash payments remaining under the SPA.

In the event that KMI does not complete the cash payments to Safin, in full or in part, in accordance with the terms of the SPA, KMI is required to transfer back to Safin the unpaid portion of its interest in LLLP on a pro rata basis.

4.5 Royalties and other agreements

The Contract lists the taxes, duties, fees, royalties and other governmental charges that are payable by LLLP. The following fees and taxable are payable:

Table 3: Ro	ovalties and Fees
Corporate Income Tax	Other Payments:
Value Added Tax	Fee for vehicle passage through Kazakhstan
Excise Taxes	Auction Fee
Subsurface Users Tax	Licence Fee for the Right to Definite Activities
Signature Bonus	Land Use Fee
Commercial Discovery Bonus	Fee for Water Resources of Surface Springs
Past Cost Recovery Payment	Environmental Emission Fee
Iron Ore Extraction Tax	Fauna Use Fee
Excess Profits Tax	Forest Use Fee
Tax on Vehicles	Fee to use Specially Protected Natural Areas
Land Tax	Radio Spectrum Fee
Property Tax	Navigable Waters Use Fee
Customs Payments	Outdoor (Visual) Advertising Fee
Transfer Pricing'	State Taxes
Pension Provision and Social Contributions	
Penalties	

Required payments include the following:

- Signing fee: \$US120,000 on signing of the contract (paid)
- Commercial discover bonus: 0.1% of tax base
- Past state exploration cost repayment: US\$1,269,918 after commencement of production
- Iron Ore extraction tax/royalty: 3.50%
- Excess profits tax: sliding scale from 10 to 60%
- Decommissioning fund: 1% of annual expenditure on exploration during exploration period;
 1% annual expenditure on extraction

4.6 Environmental liabilities

LLLP exploration activities must comply with the environmental requirements of Kazakhstan legislation and regulations, including the Ecological Code ("EC"). Under EC, the Contractor ("subsoil user") must comply with environmental requirements during all stages of a subsoil use operation. Kazakhstan environmental legislation requires that a State environmental expert examination precede the making of any legal, organisational or economic decisions with respect to an operation that could impact the environment and public health. One of the required documents to be submitted is an environmental impact assessment ("EIA" or "OVOS").

The EC requires that the subsoil user obtain environmental permits to conduct its operations. An EC permit certifies the holder's right to discharge emissions into the environment, provided that it introduces the "best available technologies" and complies with specific technical guidelines for emissions as set forth by the environmental legislation.

Government authorities and the courts enforce compliance with these permits and violations may result in civil or criminal penalties, the curtailment or cessation of operations, orders to pay compensation, orders to remedy the effects of violations and orders to take preventative steps against possible future violations. In certain situations, the issuing authority may modify, renew or revoke the permits.

The EC and the Contract set out requirements with respect to environmental insurance. The Contractor carrying out environmentally hazardous activities is required to obtain insurance to cover these activities, as well as civil liability insurance.

4.7 Permits and obligations

The following descriptions have been extracted from the Legal Opinion unless otherwise noted.

4.7.1 Kazakhstan mining law

The subsoil, including mineral resources in their underground state, are Kazakh State property, while resources brought to the surface belong to the subsoil user, unless otherwise provided by the Subsoil Use Contract. In order to develop mineral resources, the appropriate State agency (the "Competent Authority"), grants exploration and production rights to third parties. Subsoil rights are granted for a specific period, but may be extended prior to the expiration of the applicable contract or licence. Subsoil rights may be terminated by the State if the counter-party does not satisfy its contractual obligations, which generally include compliance with long-term and annual work program commitments, payment of taxes to the State and the satisfaction of mining, environmental, safety and health requirements. Subsoil rights become effective upon conclusion of a Subsoil Use Contract and a subsoil user is accorded the exclusive right to conduct mining operations, to erect production and social facilities, to freely dispose of its share of production and to conduct negotiations for extension of the Subsoil Use Contract.

While the Subsoil Law contains guarantees providing that changes to legislation which worsen the position of the subsoil user are not applicable (with the exception of legislation involving national defence or security, ecological safety and public health), the government has gradually weakened this stabilization guarantee, particularly in relation to new projects, and the national security exception is applied broadly to encompass security over strategic national resources (Foldenauer et al, 2009).

The Legal Opinion notes that the legal framework relating to exploration, development and production of the Lomonosovskoye Subsoil Use Contract is covered by the following primary and secondary legislation currently in force:

- Law of the Republic of Kazakhstan on Subsoil and Subsoil Use dated 27 January 1996 No. 2828, as amended, effective to 5 July 2010 (the "Old Subsoil Law");
- Law of the Republic of Kazakhstan on Subsoil and Subsoil Use dated 24 June 2010 No. 291-IV, as amended, effective since 6 July 2010 (the "New Subsoil Law") (the New Subsoil Law together with the Old Subsoil Law are collectively referred to as the "Mining Law");
- Presidential Decree on Further Improvement of the State Management System of the Republic of Kazakhstan dated 12 March 2010 No. 936;
- Rules on Procurement of Goods, Services and Works for Conducting Subsoil Operations dated 28 November 2007 No. 1139, as amended;
- Minutes of Direct Negotiations between the Ministry of Energy and Mineral Resources and the National Company Social Entrepreneurial Corporation "Tobol" JSC with regard to provision of subsoil use right on exploration and production of iron ores at the Deposit in Kostanay region dated 14 November 2008;
- Environmental Code of the Republic of Kazakhstan dated 9 January 2007, as amended;
- Decree of the Government of the Republic of Kazakhstan dated 10 February 2011 No. 123 on Approval of Unified Rules on Rational and Complex Use of Subsoil at Exploration and Production of Minerals; and
- Decree of the Government of the Republic of Kazakhstan dated 20 September 2010 No. 965 on Approval of Forms and Rules on Development and Submission of Annual, Middle-Term, Long-Term Programs on Procurement of Goods, Works and Services, Reports of Subsoil Users about Procured Goods, Works and Services and on Execution of Obligations on Kazakhstani Content in Staff.

4.7.2 Lomonosovskoye subsoil use contract rights

The Subsoil Use Contract provides the following rights to LLLP:

- to conduct exploration of iron mineralization of the Lomonosovskoye deposit at the contract territory on an exclusive basis;
- conduct on its own any legal actions on subsoil use within the limits of the granted contract territory in accordance with conditions of the Subsoil Use Contract;
- to use at its discretion results of its operations, including mined iron ores of the Lomonosovskoye Deposit;
- build on the contract territory, and, if necessary, on the other plots of land provided to LLLP in the prescribed order, objects of industrial and social spheres necessary for the implementation of the exploration of iron ores of the Lomonosovskoye deposit;
- on the basis of agreements with owners to use facilities and public utilities both on the contract territory and outside of it;
- in the priority order to initiate negotiations for the renewal of the contract term according to conditions of the Subsoil Use Contract;
- to engage subcontractors for execution of separate types of works related to exploration of iron ores of the Lomonosovskoye deposit;
- to transfer all or part of its rights to third parties subject to the conditions determined by the Subsoil Use Contract and legislation of the Republic of Kazakhstan;
- to cease its operations on the terms established by the Subsoil Use Contract and legislation of the Republic of Kazakhstan;
- in case of termination of the Subsoil Use Contract LLLP is entitled to dispose the property being in its ownership on its own, unless otherwise stated by the Subsoil Use Contract.

4.7.3 Lomonosovskoye subsoil use contract obligations

The Subsoil Use Contract establishes specific conditions for LLLP in respect of its grant of permission to conduct exploration activities on the Property, including the following:

- The work must start within not later than 180 days since the date of registration of the Subsoil Use Contract;
- All work set out in the minimum exploration work schedule must be concluded within the envisaged period of 5 years, unless extended in the specified order;
- LLLP shall maintain accurate and detailed notes of any work that is carried out and must, upon request, make such notes available for inspection;
- Commercial discovery of any minerals of a monetary value must be reported as soon as
 practicable thereafter, and within not more than 180 days after commercial discovery LLLP
 shall prepare report on reserves assessment to be submitted to the authorized state body;
- Upon discovery of any mineral of a monetary value or as soon as practicable thereafter, the Permit holder must report in writing to the Competent Authority;
- LLLP must take all necessary measures to prevent damage to the environment;
- No environmental damage shall be caused in the surrounding area;
- Damage in the area shall be remedied upon conclusion of work.
- LLLP shall transfer funds to liquidation fund, for social development of the region, for tuition of Kazakhstani workers.
- LLLP must report on the work carried out, its costs and results in manners specified by the subsoil legislation of the Republic of Kazakhstan

4.7.4 Subsoil use licence extension and exploration programme

Under LLLP's exploration plan for 2013 approved by MINT in late June 2013, LLLP was required to complete a scope of work and activities by December 31, 2013. As new exploration works were added to the program and this scope of work and activities would not be completed in 2013, LLLP lodged an application with MINT in September 2013 to extend the exploration period allowed under the Subsoil Use Licence from the current expiry of March 2014 to March 2016. In November 2013, MINT confirmed receipt of the application by LLLP and informed LLLP that the application would be

reviewed after receipt of supporting Project documentation. LLLP subsequently submitted a revised exploration work plan with MINT to support the extension application, including a revised plan for 2013.

In March 2014, LLLP obtained approval (the "Approval") from MINT to extend by two years the exploration phase of the Subsoil Use Licence for the Project. The original Subsoil Use Licence had a duration of 21 years, of which five years were for exploration and 16 years for mining. Both phases could be further extended, if required. As a result of the Approval, the exploration phase of the Subsoil Use Licence has been extended to seven years, and will expire on March 19, 2016. The extension of the exploration phase does not affect the 21-year term of the Subsoil Use Licence, which continues to expire on March 19, 2030.

The Approval included a new Exploration Works Plan ("EWP"), which contemplates exploration activities concerning the Project, including drilling and cameral works. The drilling work includes exploration, geotechnical and hydrogeological boreholes considered in the 2013-2014 drilling program, while the cameral work includes all administrative and evaluation work, including work to analyse the geological information obtained from the drilling program and to prepare legal documentation for securing all applicable approvals by MINT, as well as the State Registration of Reserves and Mine Master Plan, which is a pre-requisite to start the pre-stripping and mine production activities. As all exploration expenditures contained within the new EWP are required to form part of the Subsoil Use Licence, LLLP has applied for an amendment to the Subsoil Use Licence, with approval from MINT expected to be received within Q2 2014.

4.7.5 Assignment and transfer

The Legal Opinion notes that permission is required from the Competent Authority to transfer shares. The Subsoil Law requires that assignments and transfers of subsoil use rights may be made only with the prior consent of the Competent Authority. The Ministry of Energy and Mineral Resources of Kazakhstan ("MEMR") customarily interpreted this requirement very widely (Foldenauer et al, 2009).

The Legal Opinion notes that although mandatory consent of the Competent Authority was obtained, the transfer of 25 % of shares in Lomonosovskoye from initial co-participant "National Company "Social Entrepreneurial Corporation "Tobol" JSC to Safin might have been transferred without obtaining the waiver of the state's pre-emptive right. If the Competent Authority or general prosecutor's office files a claim to the court, the latter is entitled to rule the transaction of transfer of 25 % of share in LLLP as invalid. Legal Opinion notes such risk as remote.

4.7.6 Pre-emptive rights

As noted above, the Republic of Kazakhstan has a pre-emptive right to acquire subsurface use rights and equity interests in entities holding subsoil use rights and in any entity which may directly or indirectly determine or exert influence on decisions made by a subsoil user, if the main activity of such entity is related to subsoil use in Kazakhstan, when such entity wishes to transfer such rights or interests. This pre-emptive right permits the Republic of Kazakhstan to purchase any such subsoil use rights or equity interests being offered for transfer on terms no less favourable than those offered by other purchasers. The Competent Authority has the right to terminate a subsoil contract if a transaction takes place in breach of this law. According to the Subsoil Law requirements, these provisions apply both to Kazakhstan and overseas entities, including publicly traded companies (Foldenauer et al, 2009).

4.7.7 Work programs

As noted in the Seller Disclosure Schedule in the SPA, under the New Subsoil Law, the requirement for annual work programs was replaced by new medium-term document "Plan of Prospecting Works". A new plan of work will need to be agreed upon by the Competent Authority. The new plan by LLLP was finalized in June 2011. Prior to applying for this approval, the work program needs to complete three studies (environmental impact, health protection, industrial safety) which need three departmental approvals, Ministry of the Environment, Ministry of Health and Ministry of Emergencies. The Health and Emergencies approvals have been received. The environment impact study is in

progress. Following Ministry of the Environment approval, the Plan of Prospecting Works will be sent to the Competent Authority for approval.

Under the SPA, Safin agreed to develop and submit for approval a new work program which will include LLLP's outstanding financial and other obligations including the annual Work Programs for the previous periods.

4.7.8 Decommissioning

Within 1 year of the completion of the exploration period, LLLP must submit a decommissioning program and budget. LLLP must contribute to a Decommissioning fund consisting of 1% of annual expenditure on exploration during exploration period, and 1% annual expenditure on extraction. If actual costs exceed the fund, the LLLP is required to provide additional funding; if less, the amounts are returned to taxable income.

4.8 Other significant factors

4.8.1 Work program performance to date

According to the Seller Disclosure Schedule in the SPA, there was a deviation from the registered Work Program in that a ground geophysical survey and a 2 hole drilling program and follow-up geophysical work were not conducted as planned in 2009 and 2010 respectively. The Amendment 2 of 28 December 2010 authorised the exclusion of a ground geophysical program. The work was subsequently conducted in 2011. The Vendor states that these deviations will not cause the Subsoil Contact to be terminated as it was not a material breach.

The Legal Opinion notes that LLLP has underperformance of investment contractual obligations for 2010 and 2011 which according to the New Subsoil Law, such underperformance will not be considered as breach of contractual obligations if the works specified by the Work Program were fulfilled in full in physical volume. According to LLLP's report for 2011, LLLP had obligations to invest approximately US\$665,300 under the Subsoil Use Contract and actually invested around US\$498,000. The Legal Opinion noted that part of actual expenses approximately US\$113,000 was incurred not under mandatory Subsoil users' procurement rules, which entitles Competent Authority to consider LLLP's investment obligations for 2011 as executed only with respect to around US\$385,000 or 57.9 % of annual investment obligations. Such underperformance may cause the risk of unilateral termination of the Subsoil Use Contract should LLLP fail to prove execution of contractual obligations in physical volume for 2011. The Legal Opinion estimates the risk as medium. MA notes that the Seller Disclosure Statement in the SPA states that the Vendor has agreed to develop and submit for approval a new work program which will include LLLP's outstanding financial and other obligations including the annual Work Programs for the previous periods.

4.8.2 Procurement requirements

Under Kazakhstan law, all subsoil users must procure goods, works and services for subsoil use operations under prescribed statutory procedures. In particular, subsoil users are required not later than 30 calendar days from the date of approval of an annual work program, to approve an annual procurement program for the following year.

4.8.3 Local content requirements

Since 2002, Kazakhstan has implemented a policy aimed at replacing imports, and encouraging more use of local producers ("Local Content Policy"). Under the Local Content Policy, subsoil users are obliged to purchase local goods, works and services ("GWS") as required in the Contract. The LLLP Contract obligates LLLP to use GWS unless specifically approved to the contrary by the applicable regulatory authorities to the extent of at least 40% of the costs of equipment and material, must be for equipment and materials purchased of Kazakh origin. In addition, 90% of the contract work must be of Kazakh origin.

5 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

5.1 Topography, elevation and vegetation

The area is a flat plain (steppe) with a slight slope to the east. The maximum elevation in the watersheds is 200 m above sea level. The area slopes towards the Tobol River, elevation 170 m within a strongly incised river valley. The river channel slope is approximately 0.3-0.4 m per kilometre.

During summer, the Tobol River is shallow and easily crossable by vehicles. In the spring, during the flood, the river level rises 4-6 meters due to the snow melt run off.

Photo 1: Lomonosovskoye Project area topography (Source: MA 2011)

5.2 Access

Access to the Lomonosovskoye Project area is via the Rudniy-Kachary road located 1 km west of the Project area. The closest railway station is 20 km at Zhelezorudnaya, which is connected with Karaganda and Magnitogorsk through Tobol, and with Chelyabinsk through Kostanay. The closest airport is 50 km from the site, at Kostanay. If flights are not available, it is a 10 hour drive from Astana to Kostanay, then on to the Project area via the Kostanay-Rudniy road (Figure 4).

5.3 Population and transport

The town of Rudniy was established to support the mining operations at Sokolovsky-Sarbaisky Ore Mining and Processing Association ("SSGPO"), owned by Eurasian Natural Resources Corporation PLC ("ENRC"). Rudniy has a population of some 120,000.

The region is relatively well serviced with rail and road and air access.

Figure 4: Lomonosovskoye Project Regional Location (Source: Google Maps 2011)

5.4 Climate

The climate is continental with an average annual temperature is 1.2° - 1.3° C. The coldest month is January with an average temperature of -17.5° C and the possible minimum of -45°C. The warmest month, July, has an average temperature of 19.9° C and a possible maximum of 35° C in the shade.

The greatest rainfall occurs in the summer months of June, July, and August. The driest months are December, January, and February when precipitation falls as snow.

Exploration is not significantly affected by the climate.

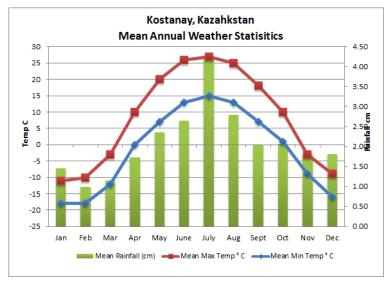


Figure 5: Rainfall, Temperature averages for Lomonosovskoye (Source: MSN Weather)

5.5 Infrastructure

The Lomonosovskoye Project has a very favourable location due to its proximity to transportation routes, and sources of water, gas, and power supply which have been established with the regional mining complex of SSGPO based in Rudniy.

The following facilities are run by SSGPO in the Rudniy area, as described in the ENRC 2007 prospectus (which MA notes are not part of, nor are available to the Lomonosovskoye Project):

- Central processing facility and pelletising plant where all of SSGPO mining operations' ore is processed. The pelletising plant is one of the oldest in the former Soviet Union. SSGPO aims to produce 21 Mt of concentrate by 2018;
- Power plant: This coal-fired power station has a capacity of 204 MW and supplies SSGPO with electricity and the town of Rudniy with electricity, heat and hot water through the district heating system;
- Rail network: SSGPO operates its own rail network for transporting iron ore from the mines to the central processing facility and for transporting waste from some of the open pits;
- Explosives manufacturing facility: This facility manufactures bulk explosives for each
 of the SSGPO mining operations; and
- Repair and maintenance workshop: This facility is responsible for providing a central maintenance support service for the major overhauls.

Photo 2: SSGPO (ENRC) Pellet Plant (Source: MA 2011)

Photo 3: Sokolovsky railway ore transport (Source: MA 2011)

6 HISTORY

6.1 Prior ownership

There is no previous private ownership of the project.

6.2 Previous exploration

Metallic mineralization was first noted in the region in 1949, when the Lomonosovskoye magnetic anomaly was detected by an airborne magnetometer survey, conducted by the Uralian Geophysical expedition. Exploration started in 1950 in several stages, from 1950-57 and then 1967-1970. Exploration was carried out over the Lomonosovskoye anomaly as well as various other regional geophysical anomalies (outside the current contract area).

6.2.1 Mapping

In 1951-52 a geological map at 1: 500 000 scale was prepared for the northern part of Turgaisky depression. In 1959 and then in 1962 a geological survey at 1:200 000 scale was completed within the project area. The most promising areas were surveyed at 1:50 000 scale with the preparation of schematic maps of the Palaeozoic basement. In 1970 a schematic geological map of the Sokolovo-Sarbaisky region was made at 1: 200 000 scale. A 1:5000 scale geology map was completed in 1992 (Figure 20).

6.2.2 Geophysics

The Lomonosovskoye magnetic anomaly was discovered in 1949 through an aeromagnetic survey conducted by the Urals geophysical expedition at 1: 100 000 scale. Subsequently a detailed magnetic survey at 1:10,000 scale was carried out by the Turgaisky geophysical expedition in 1951 on the basis of which an isodynamic map at 1:5 000 scale was made in 1952.

In 1963 the Turgaisky geophysical expedition conducted a detail gravimetric survey at 1:10 000 scale over the North-Western and Central sites of the deposit.

In 1984 T.V. Tychkova summarized the geophysical data over the western part of the Turgaisky depression at 1: 200,000 scale and over the iron mineralized regions at 1:50,000 scale. The 1:50,000 scale isodynamic map of the Sokolovo-Sarbaisky region is presented in Figure 6.

The magnetic surveys defined four main anomalies at the Lomonosovskoye Project (Figure 11): the North-Western epicenter with an area of 1000x600m and maximum intensity of 6000 nT, the Central epicenter (900x650m, 7000 nT), the South-Eastern epicenter (300x250m, 3000 nT) and the North-Eastern epicenter (1200x600m, 3000 nT).

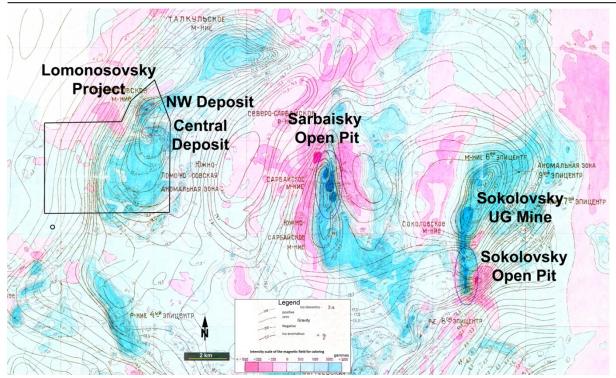


Figure 6: 1984 Compilation Map: Aeromagnetic and Gravity regional survey results (Source: LPP 2011)

During exploration in 1961-67, down-hole geophysical studies were widely used: magnetic susceptibility logging, magnetic logging, apparent resistivity, gamma logging, mise a la masse (electrical resistivity), as well as directional logging. Table 4 lists the down hole logging conducted.

Table 4: Down hole Geoph	ysical Logging				
Hole geophysical study	Scope				
Hole geophysical study	Holes	metres			
Magnetic susceptibility log	118	73,701			
Hole magnetometry	118	73,701			
Electric logging (resistivity-spontaneous potential)	107	68,064			
Gamma-logging	118	87,227			
Selective gamma-logging	27	11,952			
Directional logging	119	99,073			
Caliper logging	72	52,461			
Temperature logging	6	7,721			
Excitation-at-the-mass	39	-			
Radio-frequency survey	29	-			
Acoustic logging	1	-			
Contact method of polarization curves	19	-			

6.2.3 Drilling

Some 412 diamond drill holes are recorded in the database for the Contract area of which 190 were angle holes for a total of 131,441 m drilled (Appendix 1, Figure 7 to Figure 10). Due to the existing technical capabilities and limitations on historical mineable depths, drilling was initially limited to 400-500 m deep in the early stages of study, and then 600-700 m in later ones. As established later, due to the depth of the mineralization, most of the early drilling (pre-1981) drill holes ended above the mineralization zone or in poor, vein-type mineralization, without reaching the main mineralization zone. Thus, the nature of some anomalies remained unclear, or premature and erroneous conclusions were made regarding the extent of mineralization.

6.2.3.1 Drilling 1950-1956

At first, boreholes 1 and 2 were drilled at the epicentres of the Central and North-Western sites with 7,000 and 6,000 gamma intensities respectively. Both boreholes intersected magnetite mineralization, which justified further geological exploration. Exploration included core drilling for 23,410 m. A total of 104 boreholes were drilled including 51 exploration and 53 survey holes. Drilling was done with KAM-500 machines to a depth of 536 m (mostly to 200-300 m) with core diameters of 91 and 75 mm. Core recovery in mineralized sections averaged 78.1%.

Inclination angles were measured in 32 boreholes. Measurements were made every 25-50 m for a total of 136. Largest inclination angles were found in boreholes 8a (70°), 9a (60°), 11a (70°) and 113 (90°).

The exploration grid during the drilling program was 200 m spaced lines and 100 m spaced holes (200 x 150 m in the plane of mineralized bodies). During subsequent studies, the grid along some lines was reduced to 200 x 50 m, and over the northern flank of the North-Western site to 100×50 to 100 m.

The complete core from the mineralized zone and barren rocks within the deposit lodes was sampled. Sampling was selective, with the use of lithological control. The length of sampling sections was from 0.5 to 5.0 m.

The majority of routine and combined samples were analyzed at the Kustanaisky geological exploration trust laboratory. Magnetite iron was not determined. External analytical control was provided in laboratories of the Urals, Alma-Aty and Karaganda geological administrations. Results of internal control showed excessive permissible random errors for sulphur and phosphorus in 1951 and 1952 determinations.

6.2.3.2 Drilling 1956-1960

Exploration was only conducted in the Central site during this period of drilling. In 1956, datolite (calcium boron silicate hydroxide) was found in borehole 58 and exploration for boron mineralization started along with the evaluation of magnetite mineralization and other minerals. The boreholes were drilled along exploration lines 15-21, on a 150-200 x 100 m grid, with depths that did not exceed 300 m. The total amount of drilling was 2,384 m with core recovery of 83.7 and 82.5 % in the enclosing rocks and mineralization, respectively. Datolite mineralization was found to be of no commercial value, but at the same time a thick sequence of magnetite vein mineralization was discovered in boreholes 1761 and 1762. From 1957 to 1960 exploration for base metal mineralization revealed lead-zinc mineralization associated with garnet skarns. This data served as the justification for a survey for base metals.

6.2.3.3 Drilling 1960-1968

The period saw the preliminary exploration of the Lomonosovskoye deposit to a depth of 600 meters with 3 mineral resource estimates of the iron mineralization. These historical mineral resource estimates are described in Item 6.3.

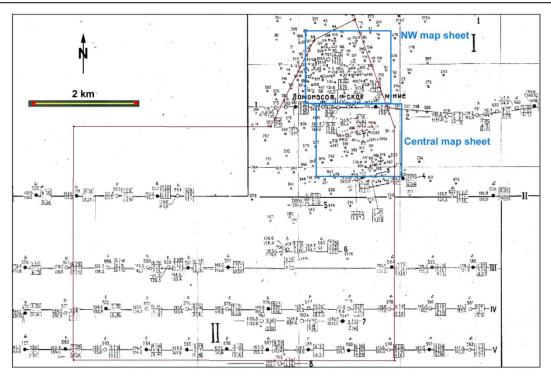


Figure 7: Historical drilling - Drill Collar locations (Source:LLLP)

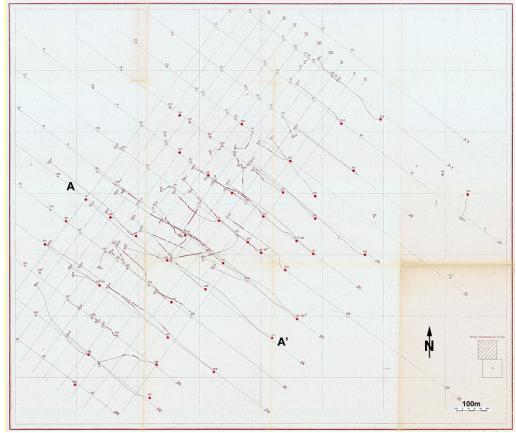


Figure 8: Historical Drilling - Drill Collar Locations & Lines Northwest resource area Refer Figure 22 for Section A-A' (Source: LLLP)

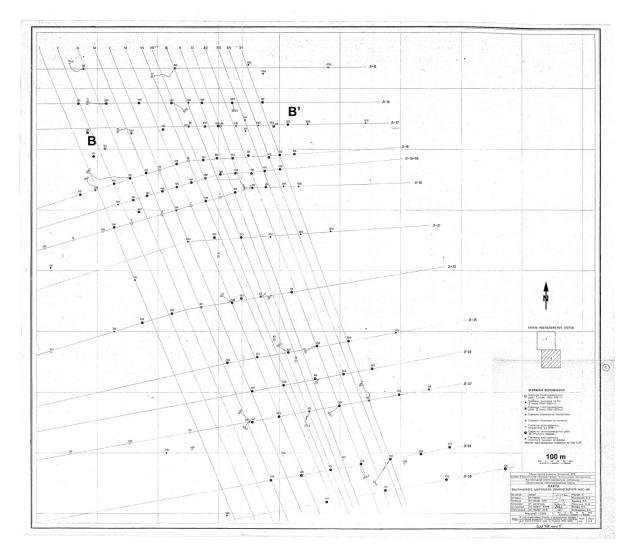


Figure 9: Historical Drilling - Drill Collar Locations & Lines Central resource area Refer Figure 23 for Section B-B'
(Source: LPP 2011)

Table 5 lists the drill holes making up the drill lines outlined in the drill location plans (Figure 8 and Figure 9, Figure 10).

	Table 5: Drill Hole and Drill Lines Northwest & Central Deposits													
Hole	North	East	Elev collar	Max Depth	Hole Type	Line		Hole	North	East	Elev collar	Max Depth	Hole Type	Line
Northwest Deposit														
338	90821	95674	201.1	1500.0	Explore	1		435	89678	94768	198.0	398.5	Explore	17
390	91066	95390	199.7	762.9	Explore	1		436	89690	95016	197.7	901.2	Explore	17
393	91051	95263	199.9	705.1	Explore	1		437	89700	95156	197.7	487.1	Explore	17
370	90916	95856	200.9	123.7	Geotech	2		438	89700	95205	197.7	486.2	Explore	17
396	90898	95303	199.5	1004.9	Explore	2		439	89701	95381	197.7	418.0	Explore	17
337	90930	95097	200.0	791.0	Explore	3		319	89538	94893	198.3	1598.1	search	18
398	91049	94939	199.9	442.5	Explore	3		320	89595	95193	197.6	2000.0	Explore	18
399	90814	95177	199.2	1146.3	Explore	3		321	89605	95298	197.4	820.0	Explore	18
299	91159	94788	200.8	10.0	Geotech	3		322	89606	95401	198.5	430.0	Explore	18
172	90951	94914	199.9	551.8	Explore	4		330	90471	94710	201.4	1600.0	Explore	18
336	90828	95073	199.9	929.3	Explore	4		441	89547	94961	198.1	600.0	Explore	18
401	91078	94736	200.4	279.0	Explore	4		442	89577	95062	198.0	494.9	Explore	18
402	90743	95178	199.0	1200.0	Explore	4		443	89589	95149	197.9	487.0	Explore	18
430	90613	95321	201.9	1400.0	Explore	4		444	89595	95245	197.9	573.8	Explore	18

			Table	5: Drill	Hole and	Drill Lir	nes	North	west &	Central	Deposit	s		
Hole	North	East	Elev	Max	Hole	Line		Hole	North	East	Elev	Max	Hole	Line
			collar	Depth	Туре						collar	Depth	Туре	
182 201	91008 91055	94835 94769	200.0	409.0 360.0	Explore Explore	4		445 495	89607 89474	95365 94743	198.0 198.8	548.8 359.0	Explore Explore	18 18
223	91104	94709	200.2	630.0	Explore	4		495	89609	95450	200.8	396.0	Explore	18
224	90979	94874	199.8	470.0	Explore	4		440a	89511	94855	198.9	500.0	Explore	18
404	90884	94829	200.1	511.2	Explore	5		484	89471	94966	197.8	540.0	Explore	18+50
405	90825	94906	200.0	740.0	Explore	5		485	89486	95013	198.5	750.0	Explore	18+51
406	90749	95008	199.4	793.5	Explore	5		486	89500	95061	197.2	440.0	Explore	18+52
407	90627	95171	199.8	1330.5	Explore	5		487	89515	95109	197.1	460.0	Explore	18+53
335A	90669	95117	198.5	1153.0	Explore	5		488	89528	95157	197.1	446.1	Explore	18+54
403a 204	90958 90693	94737 94919	200.3	365.7 874.0	Explore Explore	5 6		489 490	89543 89546	95205 95254	198.1 198.1	500.0 496.2	Explore Explore	18+55 18+56
230	90185	95601	202.6	10.0	Geotech	6		491	89545	95308	197.9	484.0	Explore	18+57
256	89947	95930	202.1	10.0	Geotech	6		492	89559	95402	201.2	453.1	Explore	18+58
334	90575	95080	198.5	1374.0	Explore	6		493	89553	95352	198.9	600.0	Explore	18+59
400	90734	94863	200.0	740.0	Explore	6		494	89457	94918	198.7	450.0	Explore	18+60
409	90665	94958	200.1	822.0	Explore	6		318	89497	95308	200.7	483.0	Explore	19
411	90631	95001	199.8	1100.0	Explore	6		446	89368	94856	201.1	232.1	Explore	19
411a	90631	95001	199.8	1304.4	Explore	6		447	89419	94937	200.5	304.2	Explore	19
174 181	90843 90905	94720 94633	201.0	555.0 327.2	Explore Explore	6		448 449	89454 89482	95158 95254	199.5 200.1	449.5 480.0	Explore Explore	19 19
202	90905	94633	201.1	625.0	Explore	6		449	89482	95254	200.1	539.3	Explore	19
228	90424	95281	199.8	10.0	Geotech	6		232	89045	93762	201.2	10.0	Geotech	19
263	91684	93590	202.7	10.0	Geotech	6		235	89157	94146	203.8	10.0	Geotech	19
265	91445	93910	203.1	10.0	Geotech	6		237	89213	94338	202.5	10.0	Geotech	19
266	91325	94070	203.8	10.0	Geotech	6		238	89297	94626	202.9	10.0	Geotech	19
267	91205	94230	204.1	10.0	Geotech	6		239	89353	94818	199.7	10.0	Geotech	19
203	90784	94800	200.5	840.0	Explore	6		241	89514	95863	201.3	10.0	Geotech	19
413 414	90687 90598	94754 94878	201.5 201.2	873.0 1108.0	Explore Explore	7		313 451	89334 89334	95274 95186	200.7 201.3	302.0 313.0	Explore Explore	21 21
414	90396	95118	198.2	1714.8	Explore	7		212	89140	99339	201.3	500.0	Explore	23
416a	90415	95118	198.2	1587.5	Explore	7		309	89083	95046	200.9	513.3	Explore	23
205	90629	94836	201.2	979.5	Explore	7		310	89120	95244	201.0	630.1	Explore	23
226	90537	94956	199.3	1050.0	Explore	7		311	89155	95441	201.3	331.0	Explore	23
392	90606	94697	202.4	1132.9	Explore	8		452	89053	94949	200.8	481.6	Explore	23
417	90805	94431	203.5	320.3	Explore	8		211	89104	95142	200.9	379.1	Explore	23
418	90745	94510	203.2	443.7	Explore	8		453	89133	95275	201.1	299.0	Explore	24
419 420	90685 90512	94594 94820	203.1	1172.0 1281.6	Explore Explore	8		306 307	88921 88955	95229 95429	201.3	504.6 750.0	Explore Explore	25 25
420	90354	95037	197.8	1501.3	Explore	8		308	88993	95628	201.3	674.7	Explore	25
394	90734	94365	204.0	642.0	Explore	9		457	88939	95327	201.4	701.0	Explore	25
158	90526	94636	202.6	1120.0	Explore	9		458	88977	95523	201.4	754.0	Explore	25
169	90634	94493	203.8	754.0	Explore	9		459	88831	95315	201.2	710.0	Explore	26
206	90771	94314	204.2	10.0	Explore	9		460	88847	95414	200.8	709.8	Explore	26
210	90424	94774	198.8	1390.0	Explore	9		461	88868	95517	201.2	703.6	Explore	26
424	90658	94295	204.8	277.3	Explore	10		462	88884	95612	201.4	500.7	Explore	26
425 426	90525 90537	94475 94494	203.6 203.6	498.5 790.0	Explore Explore	10 10		463	88901 88745	95706 95399	201.3 201.3	558.4 913.0	Explore	26 27
420	90337	94494	198.5	1497.8	Explore	10	_	303 304	88780	95598	201.3	1020.0	Explore Explore	27
428	90244	94847	190.5	1399.0	Explore	10		483	88817	95795	201.3	840.0	Explore	27
207	90479	94370	204.1	790.0	Explore	11		497	88726	95311	201.3	1018.1	Explore	27
208	90361	94530	202.1	1057.7	Explore	11		192	88762	95498	201.6	750.0	Explore	27
332	90267	94661	198.4	1394.5	Explore	11		195	88797	95696	201.3	530.0	Explore	27
233Г	90566	94279	204.5	10.0	Hydrogeo	11		218	88727	95301	201.3	150.0	Explore	27
431	90159	94638	197.7	1367.0	Explore	12		244	88514	94120	202.3	10.0	Geotech	27
482	90302	94444	202.9	890.5	Explore	12		245	88532	94219	202.0	10.0	Geotech	27
331	90202	94394	202.5 Central De	1211.7	Explore	13		246 247	88550 88585	94317 94514	201.8 201.3	10.0 10.0	Geotech Geotech	27 27
178	89882	93358	204.4	10.0	Geotech	15		247	88621	94314	201.3	10.0	Geotech	27
183	89883	93557	206.3	10.0	Geotech	15		250	88656	94908	201.2	10.0	Geotech	27
184	89883	93957	205.9	10.0	Geotech	15		251	88691	95105	201.2	10.0	Geotech	27
185	89882	94157	204.4	10.0	Geotech	15		254	88923	96389	199.7	10.0	Geotech	27
186	89885	94356	202.8	10.0	Geotech	15		301	88569	95569	201.3	1469.1	Explore	29
187	89885	94557	201.5	155.0	Geotech	15		302	88604	95767	201.3	929.6	Explore	29
188	89888	94755	201.0	840.0	Explore	15		470	88535	95373	201.2	996.5	Explore	29
190 193	89889 89883	95056	200.9	700.0	Explore	15		472	88587	95670	200.9	868.8	Explore	29
200	89883 89881	93757 93154	206.6 204.1	10.0 10.0	Geotech Geotech	15 15		473 498	88642 88550	95961 95472	200.7 201.2	796.5 900.0	Explore Explore	29 29
ZUU	U700 I	73134	∠∪4. I	10.0	Geoletii	10		470	00000	73472	201.2	700.0	Lyhine	۷۶

Table 5: Drill Hole and Drill Lines Northwest & Central Deposits														
Hole	North	East	Elev collar	Max Depth	Hole Type	Line		Hole	North	East	Elev collar	Max Depth	Hole Type	Line
257	89895	96130	200.9	10.0	Geotech	15		499	88627	95865	201.1	753.5	Explore	29
258	89895	96330	200.4	10.0	Geotech	15		474	88463	95556	201.0	1600.0	Explore	30
260	89895	96530	199.9	10.0	Geotech	15		476	88501	95751	200.6	856.5	Explore	30
325	89775	94829	197.4	660.0	Explore	16		478	88537	95951	200.3	407.8	Explore	30
326	89776	95044	197.1	517.6	Explore	16		479	88572	96148	200.7	683.8	Explore	30
327	89778	95244	197.0	529.0	Explore	16		283	87778	93439	202.1	10.0	Geotech	33
432	89776	94738	197.8	412.4	Explore	16		285	87849	93833	201.5	10.0	Geotech	33
433	89776	94937	197.5	606.7	Explore	16		287	87920	94226	201.3	10.0	Geotech	33
480	89777	95144	197.0	567.5	Explore	16		289	87991	94620	201.4	10.0	Geotech	33
481	89779	95344	197.5	665.0	Explore	16		291	88061	95014	201.2	10.0	Geotech	33
324	89709	95413	198.0	355.7	search	17		293	88132	95408	201.1	10.0	Geotech	33
434	89600	94788	198.4	346.0	Explore	17		295	88207	95801	201.2	10.0	Geotech	33
								297	88278	96195	201.0	10.0	Geotech	33

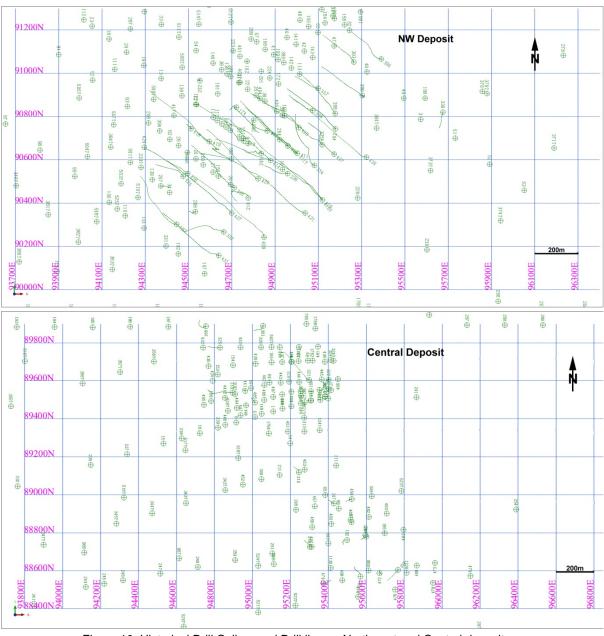


Figure 10: Historical Drill Collars and Drill lines – Northwest and Central deposit areas (Source: MA 2011)

6.2.3.4 Exploration work 1978-1984

In 1978 after a ten-year break, exploration re-commenced with the objective of completing preliminary exploration, exploration of poly-metallic mineralization, re-estimation of resources, metallurgical studies and scoping studies.

Between 1981 and 1984 exploration continued over the south-eastern part of the Lomonosovskoye anomaly and the Northern and Central epicentres of the South-Lomonosovskoye deposit as well as other anomalies (outside the current contract area). Drilling continued with holes drilled up to 1400 meters deep testing various low-intensity magnetic anomalies.

During this period, a total of 19 deep drill holes (maximum depth 1,420 m) were drilled with a total meterage of 20,624 m as well as 156 shallower drill holes down to 200 m depth with a total meterage of 21,840 m. Seven of the deep (over 1,000 m) boreholes are located within the Contract area, DDH 464, 305, 701, 706, 702, 703 and 704 (Figure 11). Boreholes 701-706 were drilled within the South-Lomonosovskoye anomaly zone and did not reveal any iron mineralization. DDH 464 and 305 in the Central site discovered a mineralized zone at a depth of 800 m, which was first identified by an anomaly in borehole 497.

It was noted (Dudina, 1985) however that DDH 701 depth intercepted a stock work-disseminated copper mineralization from 340-700 m down hole depth. Chalcopyrite and occasionally bornite and chalcocite hosted in lavo-breccias were observed. Thickness of mineralized intervals is between 1 m and 23 m with grades between 0.2% and 1.4% Cu. Individual samples (up to 10 m) reported 2.5% copper. It was also noted that the magnetic anomalies defined by peaks of 2,000, 2,000 and 1,800 gamma within this zone have not been drilled, which suggests the potential for mineralization at depth (1,200-1,800 m).

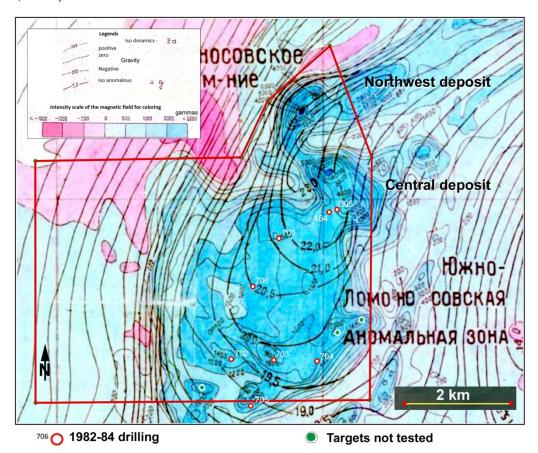


Figure 11: Aeromagnetic and gravity survey results and 1982-84 drill collars (Source: LPP 2011)

6.2.4 Metallurgy and mineralogy

The following historical metallurgical testing/mineralogical studies have been conducted on Lomonosovskoye Project mineralized material:

- In 1955, two technological samples were collected from core samples taken from the Northwest Deposit to test the amenability of magnetite mineralization to concentration. These samples, No.1 and No.2, had respective weights of 450 and 350 kg, and iron contents of 36.7% Fe and 25% Fe. The Uralmechanobr Institute carried out the studies. Dry and wet magnetic separation methods were used for sample concentration.
- Metallurgical testing of mineralization from the Northwest Deposit using 3 bulk samples weighing from 350 to 3200 kg. The study was carried out at the Uralmehanobr Institute and Leningrad Mining Institute ("LMI").
- Metallurgical and mineralogical study of 15 samples weighing 35-85 kg by LMI.
- 20 metallurgical samples were collected from the Central site. Two samples weighing 200 kg each were examined at the technological laboratory at SSGPO. One sample weighing 1823 kg was studied at Uralmehanobr. The remaining 17 samples were sent to LMI.

The mineral composition of mineralization from mineralogy work has been noted as 36% magnetite from the Northwest Deposit and 43% magnetite from the Central Deposit.

The metallurgical testing indicated that mineralization of both deposits are easy to concentrate. Tests produced magnetite concentrates containing 65.4% and 68% iron from the Northwest Deposit and Central Deposit respectively, and during extraction 71% and 76.4% iron with recoveries of 37% and 38%. This is lower than the adjacent SSGPO mining operations but is similar to variations within skarn type deposits.

It was noted that magnetite concentrates of coarse-graded vein-brecciated mineralization of the Central Deposit had increased concentration of vanadium (0.5%).

6.2.4.1 Sulphur content

A significant component of the iron mineralization is sulphur, which is generally associated with pyrite. Some sulphur is associated with anhydrite, gypsum, chalcopyrite, sphalerite and galena.

Sulphur distribution is varied or extremely varied in all mineralized bodies. The average sulphur content is 3.53% in the Northwest Deposit as determined by 1,896 samples, and 2.90 % in the Central Deposit as determined by 2,453 samples. The expected sulphur content in concentrate from the Northwest Deposit is 0.43 % (IMC Montan, 2010).

6.2.4.2 Phosphorus content

According to IMC Montan (2010), the phosphorus distribution in mineralization is varied. Its content in the Central Deposit mineralization is five times greater than in the Northwest Deposit. The average phosphorus content in Central is 0.455 % (2,454 samples) while that in the Northwest Deposit is 0.0892 %, (1,864 samples) possibly reflecting the apatite content of each deposit (4.4% and 0.6% respectively). IMC Montan (2010) noted that, in the process of concentration, phosphorus that occurs in apatite accumulates in the wet magnetic separation tailings.

6.2.4.3 Mineralization types

Seven types of mineralization including metasomatite (Table 6) have been recognized at Lomonosovskoye. As illustrated in Table 6 and in Figure 12, both deposits share similar mineralization types however the dominant mineralization types in each deposit are distinctive of each deposit and not found in both, i.e. banded-disseminated and solid banded mineralization (making up 48.9% of the mineralization) are only found within the Northwest Deposit; and vein-breccia and vein-like mineralization (together making up 69.3% of the mineralization) are only found in the Central deposit.

Table 6: Mineralization Types by Deposit				
Northwest Deposit	Distribution, %	Central Deposit	Distribution, %	
Banded-disseminated	38.4	Vein- breccia-like	61.9	
Uniformly disseminated	nly disseminated 14.8 Metasomatites		17.7	
Spotty-disseminated	14.1	Vein like	7.4	
Metasomatites	omatites 11 Solid ur		5.3	
Solid banded	Solid banded 10.5 Bre		3.2	
Solid uniform	9.2	Spotty-disseminated	3	
Breccia-like - spotty 2		Uniformly disseminated	2.5	

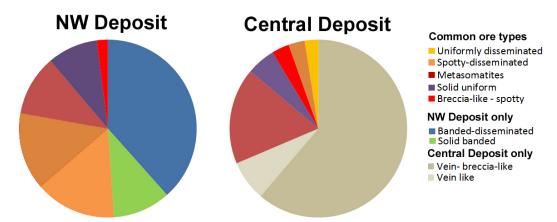


Figure 12: Lomonosovskoye mineralization types by deposit (Source: MA after LLLP 2011)

6.3 Historical resource and reserve estimates

6.3.1 Mineral resource estimates

The following information was summarised from the technical report entitled "Investment Analysis and Exploration Study on the Mine Construction Project at Lomonosovskoye Iron Ore Deposit, Kostanay Region, Republic of Kazakhstan" ("the IMC Montan Report") by independent consultants, IMC Montan (IMC Group Consulting Limited, International Economic and Energy Consulting Limited DMT GmbH).

IMC Montan used the following unpublished technical reports for the source of their descriptions of historical resources:

- Dudina N.S., Makarichev V.G., 1978-82, Report on preliminary exploration for solid magnetite
 ores on the North-Western site and vein-breccia-like ores on the Central site, with Graphic
 appendices;
- Anonymous, Report on survey and assessment works in the area of Lomonosovskoye iron ore deposit in Kustanayskaya Oblast in 1981-84;
- GIPRORUDA, 1983, Feasibility study for detailed exploration of Lomonosovskoye deposit,,
 Graphic appendices
- Porotov G.S., Rybakov V.V., 1982, Report on the study of material composition and technological properties of complex magnetite ores of Lomonosovskoye and Kacharsky deposit new sites.

The Lomonosovskoye iron deposits have had four progressive historical resource estimates. The last mineral resource estimate was based on the results of drilling of the massive iron lodes at the Northwest Deposit and of the vein- breccia mineralization of the Central Deposit in 1978-84 ("1984 historical mineral resource estimate"). The description of this mineral resource estimate was sourced from the IMC Montan Report as noted above.

A polymetallic mineral resource estimate was also completed in 1993 which was a re-estimate based on the results of the analysis of copper, lead and zinc which were excluded from the previous reports. There is insufficient data available to describe this historical estimate.

The 1984 historical iron mineral resources at the Northwest Deposit were estimated between exploration lines PR-1 and PR-13 along strike and to a depth of 1,600 m (absolute elevation –1,400 m) down dip. Approximately 59 % of the estimated historical mineral resources are located above a depth of 800 m.

In the Central deposit, the 1984 historical iron mineral resources were estimated between exploration lines PR 15 and PR 30 to a depth of 820-880 m (absolute elevation -680 m).

The 1984 historical mineral resource estimate was based on the 1978-84 exploration results assuming total iron cut-off grades of 15% (only for Central site), 20% and 25% Fe. A minimum thickness of mineralized bodies of 10 m was used for the Central site and 5 m for North-Western site. A maximum thickness of barren rock layers included within the mineralized zones was 10 m for the Central site and 8 m for the North-Western site.

The tonnage factor was determined by laboratory methods for each site separately, using 86 samples from the Northwest Deposit, and 36 from the Central Deposit. The average tonnage factors used was 3.8 m³/t for the Northwest Deposit and 3.7 m³/t for the Central Deposit.

The 1984 historical mineral resource estimate was calculated using the vertical cross-sectional method, i.e. polygonal method. Areas were measured by planimeter and checked by simple geometry. Those mineralized bodies identified by geological correlation were subject to separate reserve estimates. Mineralized bodies were not combined. The results of the reserve estimate are presented in Table 7.

Table 7: 1984 historical mineral resource estimate *						
Cut-off	Category	Tonnage	Fe total	Magnetite	S	Р
Fe, %	Calegory	Torinage	%	%	%	%
North-W	estern site					
20	C1	146,689,500	34.24	24.24	3.47	0.08
	C2	69,090,700	35.51	25.27	4.27	0.07
25	C1	123,406,300	36.25	26.93	3.52	0.08
	C2	62,728,500	37.27	27.19	4.35	0.07
Centr	ral site					
15	C1	124,402,930	31.48	-	-	-
	C2	19,287, 270	25.2	-	-	-
20	C1	104,298,590	34.09	24.99	2.77	0.43
	C2	13,110,910	27.58	19.27	2.35	0.36
25	C1	81,818,370	37.14	27.75	2.84	0.45
	C2	6,877,790	30.55	22.5	2.3	0.38
Total for deposit						
20 C1	C1+C2	333,189,700	3	24.49	3.37	0.2
		733,109,700	4.2		3.31	0.2

This historical mineral resource estimate is not NI-43-101 compliant. The category C1 is equivalent to Indicated under CIM definitions standards The category C2 is equivalent to Inferred under CIM definitions standards

The 1984 estimate totalled 333 Mt at an average grade of 34.2% iron, using a 20% iron cut-off, which was classified under the Kazakhstan classification system as C1 and C2 categories. In Kazakhstan, mineral resources and reserves are classified according to the 1981 "System of Classification of Reserves and Resources of Mineral Deposits". This classification system uses seven categories in three groups, based on the level of exploration performed. Table 8 presents a reconciliation of the Kazakh classification system to the Canadian Institute of Mining, Metallurgy and Petroleum ("CIM") standard definitions.

Table 8: Reconciliation of Classifications of Mineral Reserves and Resources *				
CIS Classification	CIS	Comparable CIM	Comparable CIM	
	Categories	Resources	Reserves	
Explored Reserves	A and B	Measured	Proven / Probable	
Explored Reserves	C1	Indicated	Probable	
Evaluated Reserves	C2	Inferred	-	
Prognosticated Resources	P1, P2 and P3	Potential	-	
* Foldenauer et al, 2010				

6.3.2 Comment of mineral resource estimates

MA notes that the C1 and C2 categories referred to above for the 1984 historical mineral resource estimate would be roughly equivalent to Indicated and Inferred categories under CIM standards (Table 8). However the figures quoted above are regarded as historical by MA as they are pre-2000 and have been superseded by the estimates reported here. It is MA's opinion that the 1984 historical mineral resource estimates have been largely verified by the new drilling and estimates; and KMI is not treating the historical estimates as current.

It is noted that the mineralization outlined by the drilling has not been closed off at depth in the Northwest Deposit, and possibly in the Central Deposit. In addition, the modelling of the individual mineralized lenses in both deposits is incomplete.

6.4 Historical production

There is no historical production from the Lomonosovskoye Project.

7 GEOLOGICAL SETTING AND MINERALIZATION

7.1 Regional geology

7.1.1 Source of data

The geology of the region was investigated by Russian geologists, following the discovery of the Sarbaisky and Sokolovsky magnetite deposits in 1949, particularly from 1958, through the 1960's and up to 1971. The tectonic framework of the southern Urals was increasingly investigated in the mid 1980's, and seismic lines across the southern Urals in the mid 1990's led to further advances in the understanding of the tectonic evolution of the region (e.g. Berzin et al, 1996; Echtler et al, 1996; Juhlin et al, 1996; Knapp et al, 1998 and Matte, 2006).

This regional data was reviewed and presented in detail by Herrington et al (2002) and Herrington et al (2005) in the context of relating the mineral deposits to the tectonic evolution and framework of the southern Urals. The magnetite deposits of the Turgai (south-eastern Urals) area, including their mineralogy, geological setting and genesis, are discussed in detail in Hawkins et al (2010). Most of the information presented in the Geological section of this report is derived from these three most recent sources.

7.1.2 Tectonic framework

The Lomonosovskoye deposits, along with a number of significant magnetite deposits, occur in the Valerianovskoe (Valerianov, Valerianovsky) magmatic arc in two districts: the Glubochensk belt in the north in Russia, and the Turgai belt to the south in northern Kazakhstan. The Valerianovskoe arc lies east of the main Urals fault zone in the southern limit of the Uralides (Urals, Ural Mountains, Ural Orogen).

The Uralides are a 2,500 km long, north-south trending mountain belt that extends from the steppes of northern Kazakhstan to the Arctic Ocean, and were formed as a result of the collision of the Baltica (largely the East European craton) and Siberia-Kazakh plates during the Late Carboniferous to Early Permian periods (Figure 13).

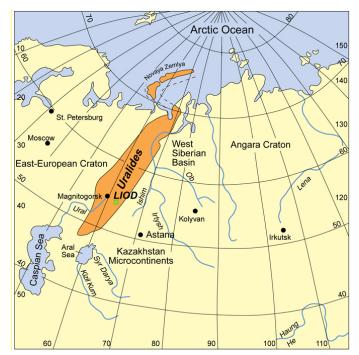


Figure 13: Location of the Urals between Europe & Asia.

LIOD = Lomonosovskoye Iron Project
(Source: Perez-Estaun & Brown, undated)

On a regional scale, the Southern Uralides can be divided into four zones, bounded by large north-south structures (Figure 14):

- The Sakmara Zone: This is part of the foreland thrust and fold belt up to 150 km wide, representing an obducted accretionary complex of Neoproterozoic and Lower Palaeozoic sediments and arc rocks, and ophiolites/mafic-ultramafic complexes, thrust over the eastern margin of the East European craton ahead of the approaching Magnitogorsk arc to the east. Its eastern margin is a 20 km wide zone of east dipping melange of the Main Urals fault zone.
- The Magnitogorsk Zone: This zone comprises Mid-Late Devonian oceanic arc sequence of tholeiites, overlain by younger calc-alkaline volcanics, and a westward thickening volcaniclastic pile. They are overlain by Lower Carboniferous carbonates and intruded by Early Carboniferous granitoids.
- The East Uralian Megazone: This is the suture between the East European craton and the Kazakh plate and is composed of extensively strike-slip faulted, deformed and metamorphosed Proterozoic and Palaeozoic continental and island arc fragments, intruded by Late Devonian to Early Carboniferous tonalite to granodiorite masses, and by Late Carboniferous to Permian granitoid batholiths with subordinate diorite and gabbro. On its eastern margin, the Troitsk fault is a west dipping melange zone of serpentinite containing relics of harzburgite.
- The Trans-Uralian Zone: This comprises Lower Palaeozoic basement overlain by the Andean-type Valerianovskoe arc with an east-dipping subduction zone. This arc is composed of Devonian and Carboniferous calc-alkaline volcano-plutonic complexes overlain by terrigenous red beds and evaporates. Two main linear belts of iron, copper and gold mineralization in this zone are: a western belt (the Alexandrovksaya and Irgizskaya mineral zones) and the eastern Valerianovskoe mineral zone (host to the Lomonosovskoye Project deposits and SSGPO deposits, Figure 15).

The development of the four zones and evolution of the Uralides is summarised in Figure 16.

7.1.3 Valerianovskoe Arc

In the Valerianovskoe arc (Figure 15), Silurian sediments with Devonian and Carboniferous calcalkaline volcano-plutonic and sedimentary complexes are composed mainly of volcaniclastic rocks and volcanic flows, which are intruded by gabbroic to dioritic plutons. Ophiolite units and high pressure rocks are also present. It is bounded by the major Livanovsk and Anapovsk faults in the west and east respectively.

The region was affected by major sinistral transpressional strike-slip faulting from 320 to 265 Ma (Mid Carboniferous to Late Permian) due to the oblique closure of the Uralian Ocean and continent-continent collision of the East European craton and the Kazakh plate.

By the end of the Triassic, much of the Uralides had been eroded with the development of a peneplain over the bulk of the orogen, particularly in the South Urals which includes the Trans Uralian zone. Jurassic and Lower Cretaceous marine and continental sedimentary rocks covered this peneplain, with at least three marine regression-transgression cycles recorded from the Late Cretaceous to Eocene.

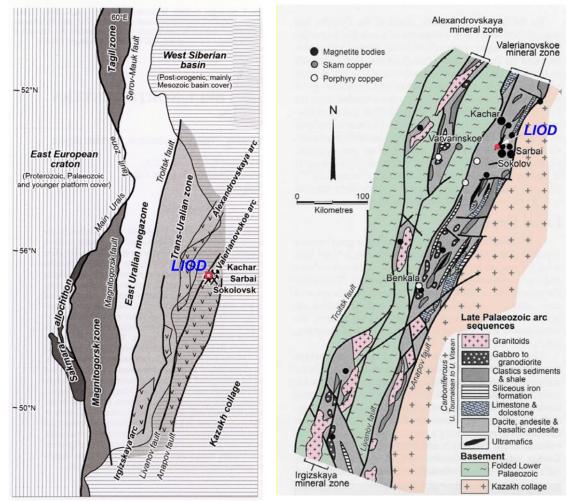


Figure 14: Tectonic zones.

Location of Valerianovskoe Arc

Showing location

Figure 15: Valerianovskoe Mineral Zone Sub-Mesozoic geology of the Trans-Uralian Zone

Showing location of the Lomonosovskoye deposits (LIOD) (Source: Hawkins et al, 2010)

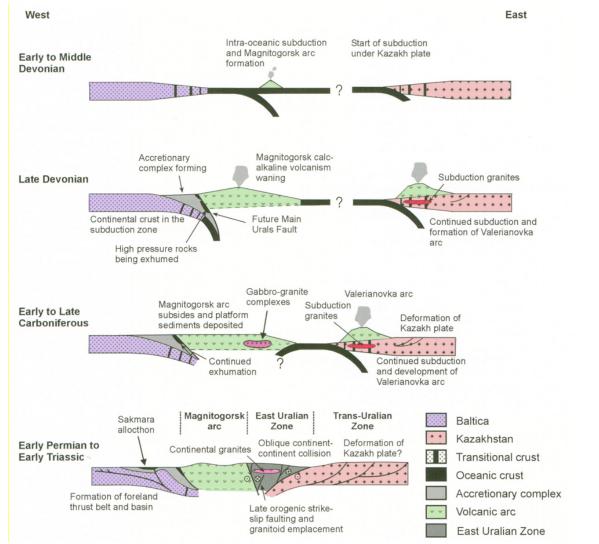


Figure 16: Tectonic evolution of Uralides. (Source: Herrington et al, 2005)

7.2 Local geology

The Carboniferous sequence that hosts the giant deposits of the Valerianovskoe mineral zone is more than 3.5 km thick, while in the western belt (Alexandrovksaya and Irgizskaya mineral zones) it is only 700 m thick. In the Valerianovskoe zone, early rift-related sedimentary rock sequences are overlain by two volcano-sedimentary successions, the Valerianovo and Kachar supergroups (Figure 17).

<u>The Valerianovo supergroup</u> consists of more than 1000 m of andesite lava and volcaniclastic sediments, overlain by siliclastic and carbonate rocks. Anhydrite layers and mudstones are found in the marine limestone in the upper part of the supergroup. Basaltic-andesite and andesite dominate the pile, which has been interpreted as representing a single large scale continental volcanic event.

The Kachar supergroup contains about 800 m of conglomerates, tuffs and sediments, interbedded with mafic to intermediate flows and their pyroclastic equivalents. These volcanic rocks are interpreted to be largely sub-aerial. Directly overlying the Valerianovo, the Kachar supergroup forms a distinct unit of red volcanic breccia containing 5 cm clasts of magnetite in a hematised matrix, with hematite rims surrounding breccia clasts. This sequence is intruded by gabbros and diorites of the Sarbai-Sokolovsk complex, considered to be comagmatic with the Kachar supergroup volcanics and as such, part of the Valerianovskoe volcano-plutonic complex.

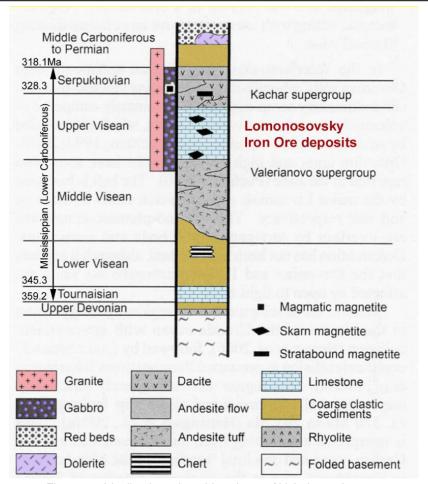


Figure 17: Idealised stratigraphic column of Valerianovskoe arc (Source: Hawkins et al, 2010)

The Sarbai-Sokolovsk complex is a composite pluton in which orthomagmatic disseminations of titano-magnetite are found. A second intrusive suite, the Sulukolskaya complex was subsequently emplaced, containing xenoliths of the Sarbai-Sokolovsk suite.

The magnetite deposits of the Valerianovskoe mineral zone are hosted by andesitic volcanics, pyroclastics, and intercalated sediments and carbonates of the Valerianovo supergroup. Large gabbro-diorite-granodiorite igneous bodies of the Sarbai-Sokolovsk and Sulukolskaya complexes are related to the mineralization, with granitic facies interpreted as having been intruded from Mid-Visean to Permian. In some deposits, the host sedimentary sequence is cross cut by post-mineralization dioritic porphyry.

The Palaeozoic units of the Turgai belt (Kazakhstan portion of the Valerianovskoe arc) are entirely covered by Mesozoic to Cainozoic sediments which are sub-horizontal and range from 40 to 180 m in thickness. Plan and cross-sections of the nearby major deposits are shown at Figure 18 and Figure 19 which illustrate the dimensions and orientation of the host limestone units and the skarn mineralization. MA has not been able to verify that the mineralization illustrated in Figure 18 and Figure 19 for the regional deposits of Sarbaisky, Sokolovsky and Kacharsky and notes that the descriptions of the iron mineralization at these deposits is not necessarily indicative of the same on the Lomonosovskoye Project.

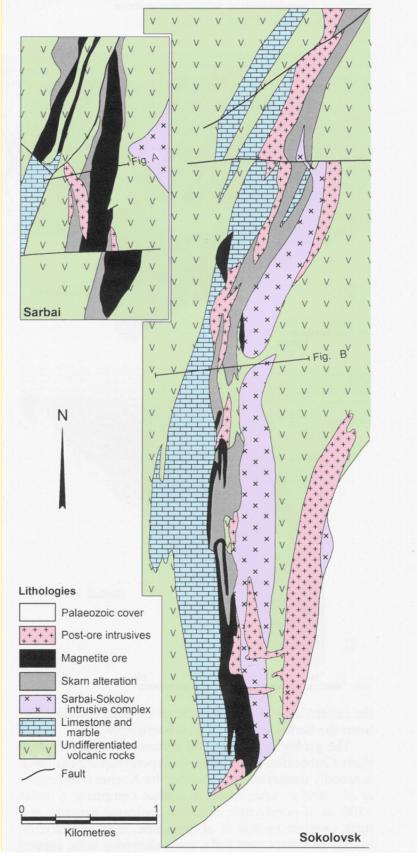


Figure 18: Sokolovsky & Sarbaysky (Sarbai) – Simplified Geology (Source: Hawkins et al, 2010)

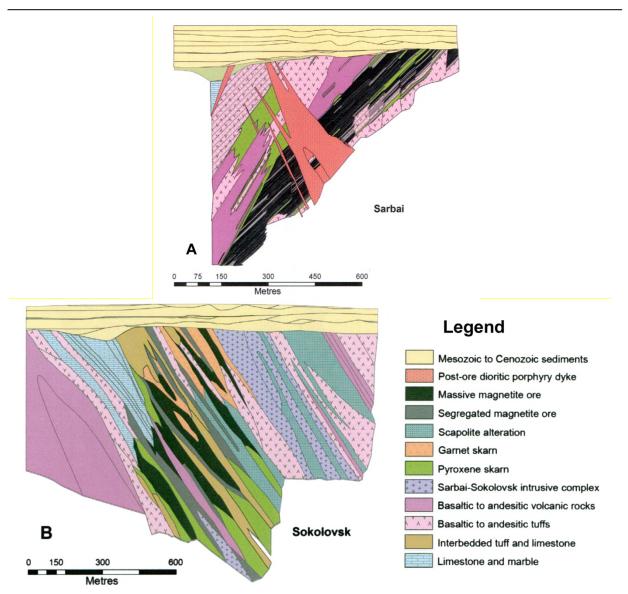


Figure 19: Geological cross-sections of Sokolovsk and Sarbai magnetite deposits

Refer Figure 4 for location relative to Lomonosovskoye & Figure 18 for location of cross-sections A and B

(Source: Hawkins et al, 2010)

7.3 Prospect geology

The following descriptions of the prospect geology are derived from IMC (2010).

The Lomonosovskoye Project comprises two deposit sites: Northwest ("NW") Deposit and Central Deposit (Figure 20), which is further refined into several domains. The domains differ in geometry but are broadly similar in geological structure, genesis and composition of mineralization. The domains are impacted by, and to some extent defined by, diorite dykes and intrusions as well as faulting.

The geological structure of the deposit is formed by the multiple dislocation of sedimentary (calcareous siltstone, limestone, and clay-carbonate rocks), volcanic-sedimentary (sand tuff, silt tuff, and tuffs of andesite and andesite-basalt porphyry) and volcanic (andesite and andesite-basalt porphyry) rocks of Lower Carboniferous age, intrusive (diorite stocks), subvolcanic (dyke aphyrite of intermediate-mafic and mafic compositions), metamorphic (marmortized limestone) and metasomatic (skarn) rocks.

7.3.1 Northwest Deposit

In the Northwest Deposit (Figure 21, Figure 22), magnetite mineralization is represented by relatively high-temperature, early metasomatic formations along the contact between lower sedimentary (limestone) and upper volcanic-sedimentary (tuffite) members of the Sokolovsky suite. The mineralization is surrounded by an envelope of garnet-pyroxene skarns and forms a single skarn-mineralization zone that can be traced over 1,200 m along strike in a south-western direction (azimuth 220°), and down dip to a depth of 1,600 m with an average mineralized body thickness of 200 m.

Dip angles vary from 55° to 65° in the upper portion of the cross-section (to an elevation -450 m), to nearly vertical at depth.

7.3.2 Central Deposit

Magnetite mineralization in the Central Deposit (Figure 21, Figure 23) has a complex multi-domain structure due to the widespread influence of diorite intrusions and faulting. Mineralized bodies are defined by gradation in intensity rom full skarn replacement to disseminated and partial replacement. The border between them is determined by chemical composition. Mineralized bodies are predominately of seam-like and lenticular shape. Dip angles vary from vertical to 300 for individual mineralized bodies. Average thickness of mineralized bodies is highly variable. The Central Deposit is more irregular that the Northwest Deposit but mineralization is contained with an area is traced along strike over 2,300 m and to a depth of 200 to 600 m in the north, and to 800 m in the south, although depth extent is poorly tested in most areas due to the complexity of the deposit.

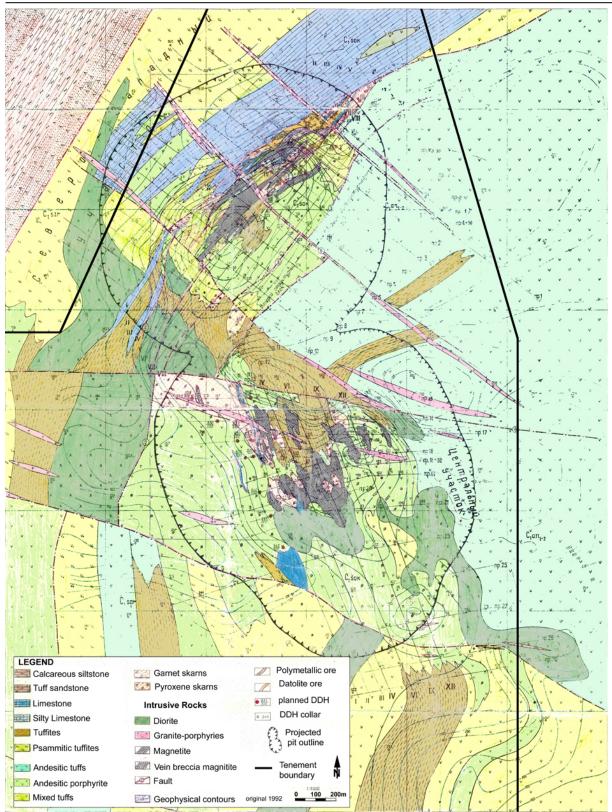


Figure 20: Lomonosovskoye Project Prospect Geology Map (Source: LLLP, 2011)

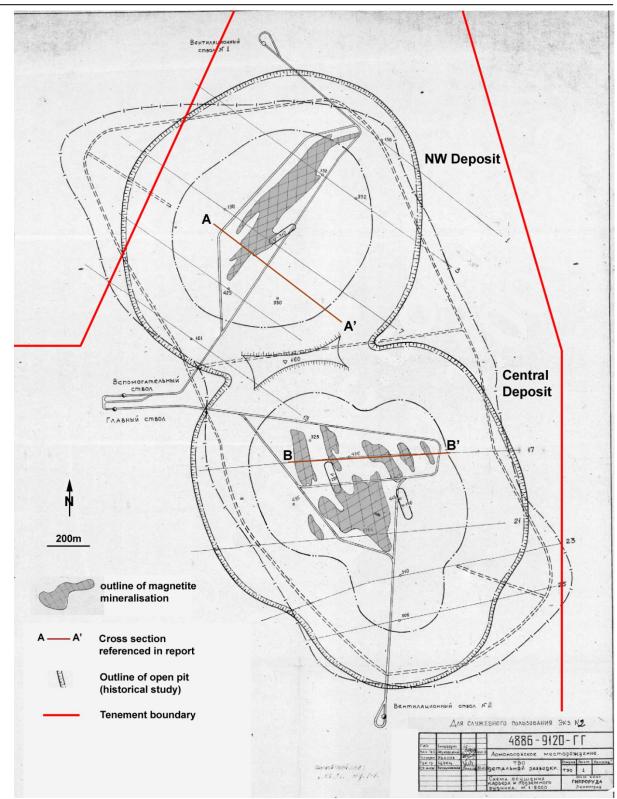


Figure 21: Outline of Magnetite mineralization: Northwest and Central deposits Refer Figure 22 and Figure 23 for cross sections (Source: after LLLP)

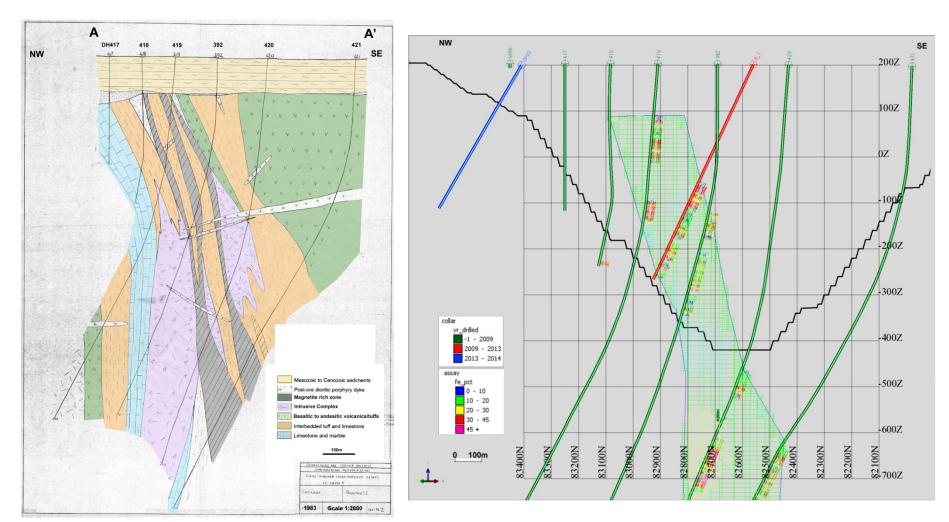


Figure 22: Drill Line 417-421 Cross Section, Northwest Area.

Left is historical interpretation, right is current Interpretation; Refer Figure 8 and Figure 21 for location (Source: LLLP & MA)

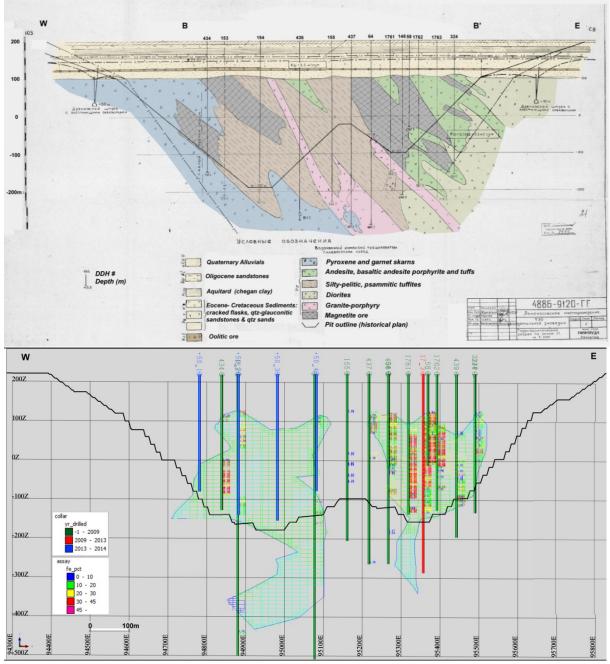


Figure 23: Drill Line 434-324 Cross-Section, Central Area.

Top is historical interpretation, beneath is the current interpretation; Refer Figure 9 and Figure 21 for location (Source: after LLLP & MA)

7.4 Mineralization

7.4.1 Mineralization

Mineralization at Lomonosovskoye consists of a gradation from massive magnetite to disseminated magnetite. The boundary between massive and disseminated mineralization is difficult to identify as dense disseminations of magnetite grades into massive. It is clear from Figure 24 that in broad terms the mineralization styles and events which have affected both areas are similar. The basic statistics based on 5 m composites within the interpreted mineralized domains display four clear peaks, although there some mixing of populations between peaks, each representing a different style/phase

of mineralization. The first a low grade mineralization event with a mean grade around 18% Fe is similar in both the Northwest and Central deposits, as is the second event with a mean grade of 24% Fe in both areas. The third is more variable with the mean remaining the same (35% Fe) but with significantly more in the Northwest Deposit than that in Central. The last is the high grade massive magnetite with a mean grade of 57% Fe in the Northwest and 62% Fe in Central shows that there is a more pronounced phase in the Central Deposit. The massive mineralization is defined as being magnetite with 50% or greater iron content. Hematite is also present.

7.4.1.1 Massive magnetite mineralization

The massive magnetite occurs as "seams" of mineralization with barren skarn ranging from 10-15 centimetres to meters in thickness.

Macroscopically, the massive magnetite mineralization is dark grey in colour with a predominantly fine-grained structure, often with a layered appearance due to the substitution of primary stratified rocks with layered magnetite and disseminated sulphides.

The mineralogical composition of the mineralization is characterized by predominance (60% to 80%) of magnetite, and occasionally titanium-magnetite. Pyrite content is general low (1-2%) but can be up to 5% or more in places. Pyrite is often accompanied by chalcopyrite, lesser sphalerite (as single grains), and galena. Non-metallic minerals usually occur as interstitial material between magnetite grains, and include garnet, calcite, actinolite, epidote, and chlorite plus accessory apatite.

7.4.1.2 Disseminated magnetite mineralization

The disseminated mineralization consists of magnetite skarns genetically inseparable from massive magnetite mineralization. The disseminated mineralization shows a transition from massive magnetite mineralization through to an almost barren skarn. The disseminated mineralization can be divided into two groups:

- 1. Magnetite mineralization related to garnet skarns ("magnetite-garnet skarns"), and
- 2. Magnetite mineralization confined to the epidote-chlorite rocks ("magnetite epidote-chlorite").

Magnetite-garnet skarn mineralization

Magnetite-garnet skarn mineralization is the dominant type. It commonly has a dark grey irregular mottled and granular-crystalline appearance with a banded texture. The banded texture is caused by alternating layers of different density disseminations of magnetite interbedded with barren skarn and magnetite, and sometimes with layered disseminated sulphides and calcite.

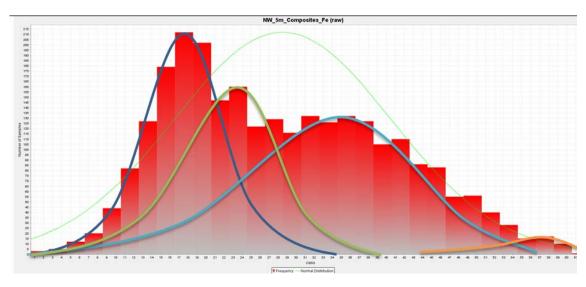
The approximate average mineralogical composition of the magnetite-garnet skarn is magnetite, and titanium-magnetite from 40-60 %, pyrite about 1-2 % (with lesser chalcopyrite, sphalerite and galena as single grains). The non-metallic minerals are mainly garnet, epidote, actinolite, and chlorite.

Magnetite occurs as disseminated fine grains or irregularly shaped clusters of tiny (0.05 mm) isometric grains, sometimes forming extended chains. Phenocrysts of magnetite, sometimes merging with each other, form solid granular aggregates.

Pyrite is generally disseminated or in small intersecting veins, and in lower grade skarns it locally cements the grains of magnetite and non-metallic minerals.

Magnetite-epidote-chlorite mineralization.

The magnetite-epidote-chlorite mineralization occurs as high and low grade mineralization and has a greyish-green colour. This mineralization for the most part has a banded structure, with lesser disseminated and breccia material. It is irregularly fractured with pyrite and calcite fracture fillings, often with associated zeolites.


Magnetite (and titanium-magnetite) can make up to 50% of the material, mainly as fine-grained phenocrysts and as individual clusters of magnetite and sulphides. Sulphides identified are

disseminated pyrite, chalcopyrite, sphalerite, galena, associated with pyrite as inclusions in small isolated grains.

7.4.1.3 Oxidised mineralization

IMC Montan (2010) note that a Palaeozoic weathered horizon occurs in all cross-sections of Northwest Deposit and partially in the Central deposit. The upper and marginal parts of mineralized bodies therefore could be expected to contain oxidized mineralization similar to that which has been found in the neighbouring deposits of Sarbai-Sokolovsky.

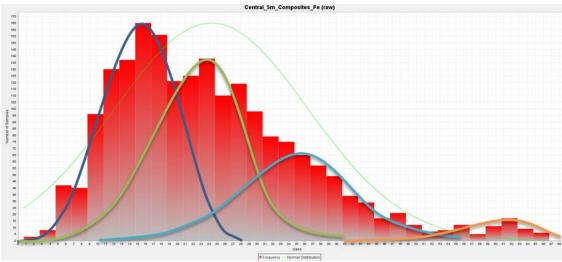


Figure 24: Comparison of mineralization events between the Northwest and Central Deposits

7.4.2 Host rocks

The deposits are enclosed in a package of carbonate sediment, basic volcanic rocks and tuffs with porphyritic granitoid and dioritic intrusions and dykes. The immediate host rocks are skarns which usually envelope mineralized zones and are extensively developed between mineralized zones. The most widely developed are pyroxene and pyroxene-garnet skarns.

Mineralized bodies of the Northwest Deposit lie in contact with limestone and tuffites of the Sokolovskaya suite. They are accompanied with aureole of garnet-pyroxene skarns, making up a single skarn and iron mineralization zone.

7.4.3 Controls

The NNE-trending orientation of the arc and major regional faults due to sinistral transpressional strike-slip faulting resulting from the oblique ocean closure and continent-continent collision (and secondary faults) resulted in probable pathways for mineralising fluids. The carbonate sediments of the Valerianovo supergroup (e.g. limestone tuffites and limestone) exert a lithological control on mineralization. Close proximity to the plutonic gabbro-diorite-granodiorite bodies of the Sarbai-Sokolovsk complex are not considered relevant, as deposits such as Kachar, are some distance from them.

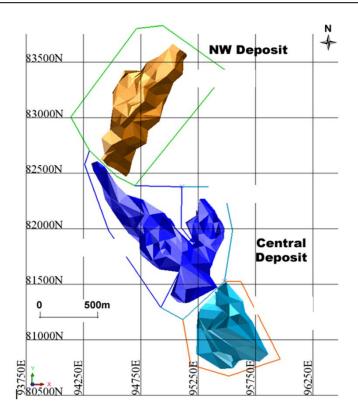
7.4.4 Alteration

In general the alteration assemblage is typical of skarns, i.e. calc-silicate minerals such as wollastonite, actinolite-tremolite, andradite (garnet), diopside-augite (pyroxene) and scapolite, followed by sodic-potassic alteration in the form of K-feldspar, albite and scapolite.

Hawkins (2010) reports that alteration appears to be generally zoned outward from the main Sarbai-Sokolovsk intrusive as:

- Biotite-albite-scapolite in volcanic hosts.
- Garnet-pyroxene skarn in the footwall of the magnetite mineralization.
- Skarn mineralization (magnetite and scapolite) in the carbonate hosts.
- Scapolite-pyroxene alteration.
- Pyroxene skarns in the hanging wall.
- Outer, hornfels and albitised volcanic country rocks.

7.4.5 Dimensions and continuity


To date there are two areas of mineralization, the Northwest Deposit and the adjacent Central Deposit. Neither deposit outcrops (Figure 22, Figure 23) as both deposits are covered by about 100 m of overburden.

The Northwest Deposit contains stratabound magnetite mineralization along the contact between lower sedimentary (limestone) and upper volcanic-sedimentary (tuffite) members of the Sokolovsky suite. The mineralization is surrounded by an envelope of garnet-pyroxene skarns and forms a single skarn-mineralization zone that can be traced over 1,200 m along strike in a south-western direction, and down dip to a depth of 1,600 m with an average mineralization body thickness of about 100 m.

The Central Deposit has a complex multi-domain structure due to the widespread influence of diorite intrusions and faulting. Mineralized bodies are defined by gradation in intensity rom full skarn replacement to disseminated and partial replacement. The border between them is determined by chemical composition. Mineralized bodies are predominately of seam-like and lenticular shape. Dip angles vary from vertical to 300 for individual mineralized bodies. Average thickness of mineralized bodies is highly variable. The Central Deposit is more irregular that the Northwest Deposit but mineralization is contained with an area is traced along strike over 2,300 m and to a depth of 200 to 600 m in the north, and to 800 m in the south, although depth extent is poorly tested in most areas due to the complexity of the deposit

The Northwest Deposit appears to have a more consistent continuity whereas the Central Deposit appears relatively more discontinuous; however both deposits remain to be drilled out and the dimensions and continuity are not fully defined.

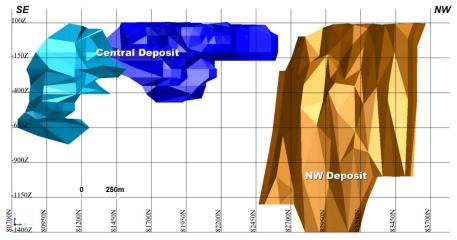


Figure 25: Plan and long section view of the Lomonosovskoye Iron Deposit

8 DEPOSIT TYPES

The Lomonosovskoye deposit and other magnetite deposits in the Valerianovksoe arc are generally referred to as iron skarn deposits.

8.1 Classification

"Skarn" and "skarn deposit" are descriptive terms based on mineralogy and free of genetic implications. There are many definitions and usages of the word "skarn". Skarns can form during regional or contact metamorphism and from a variety of metasomatic processes involving fluids of magmatic, metamorphic, meteoric, and/or marine origin. They are found adjacent to plutons, along faults and major shear zones, in shallow geothermal systems, on the bottom of the seafloor, and at lower crustal depths in deeply buried metamorphic terrains. What links these diverse environments, and defines a rock as skarn, is the common garnet and pyroxene mineralogy.

Skarns generally result from the early high temperature (> 500°C) alteration of limestone (or other carbonate rocks) resulting in a mineralogy dominated by calc-silicate minerals such as garnet and pyroxene, followed by a lower temperature (< 400°C) retrograde alteration.

There is a general pattern of zoning of proximal garnet, distal pyroxene and minerals such as wollastonite, or massive sulphides and/or oxides, near the marble front.

Skarns that contain mineralization are termed skarn deposits and are generally classified based on dominant economic metal. The seven major skarn deposit types are Fe, Au, Cu, Zn, W, Mo and Sn. Plutons associated with Fe and Au skarns contain significantly more MgO and less SiO_2 and K_2O (Meinert et al, 2005).

Iron skarns

Iron skarns are mined for their magnetite content although minor amounts of Cu, Co, Ni and Au may be present. These deposits are typically very large with > 1,000 Mt and > 500 Mt contained Fe.

The skarn minerals consist dominantly of garnet and pyroxene with lesser epidote, ilvaite, and actinolite. Alteration of igneous rocks is common with widespread albite, orthoclase, and scapolites veins and replacements. When wallrocks are magnesium-rich (e.g. dolomite), the main skarn minerals are forsterite, diopside, periclase, talc and serpentine.

IOCG (Iron Oxide Copper Gold/Iron Oxide Alkali Altered)

The question of whether iron skarns also fall under the classification of Iron Oxide Copper Gold (IOCG) deposits is implicitly questioned in Herrington et al (2002), raised again in Herrington et al (2005) and discussed in Williams et al (2005). Williams et al (2005) suggested that a deposit must have economic copper to be included in the category.

Porter (2000) suggested that IOCG does not represent a single style or a common genetic model, but rather a family of loosely related mineralization that shares a pool of common characteristics, the principal common feature being the abundance of low-titanium iron oxides. Pollard (2000) further discussed the variety of characteristics and factors for this diversity.

Porter (2010a) introduced the term "iron oxide-alkali altered" mineralized systems that included IOCG deposits and similar deposits that also have abundant related hydrothermal iron oxides and associated alkali alteration, but are copper-gold deficient. This includes the iron skarns of the Valerianovskoe arc.

This compares with Groves et al (2010) who used the term "iron-oxide associated" to include IOCG, iron oxide apatite, iron skarns and other related deposits. Although the criteria of Meinert et al (2005) discussed above is clear, Porter (2010a) reasons that as IOCG and related mineralization are the products of interaction between host protoliths and hot, saline to hypersaline, volatile-rich fluids, should those protoliths be calcareous, then a skarn alteration assemblage would be expected.

Hawkins et al (2010) agree stating that the iron skarns of the Turgai belt exhibit many of the characteristics of IOCG-style mineralization, including significant early iron oxide (low Ti magnetite) deposition, followed by a late copper sulphide phase, association with extensive alkali metasomatism and a broad space-time association with batholithic intrusive masses.

In summary, the Valerianovskoe iron skarns are regarded as IOCG-related deposits by Hawkins et al (2010), iron oxide associated by Groves et al (2010) and iron oxide alkali altered by Porter (2010a) and Porter (2010b).

8.2 Valerianovskoe Arc Iron Skarns

The iron skarns of the Valerianovksoe arc are related to the gabbro-diorite-granodiorite igneous bodies of the Sarbai-Sokolovsk and Sulukolskaya complexes (interpreted from geophysics to have batholithic proportions at depths of 2 km) emplaced during the closure of the Uralian ocean and subsequent continent-content collision. The mineralization zones of the deposit form a series of stacked, stratabound, massive magnetite lenses and may also contain up to 10 % each of hematite and sulphides. Gangue minerals include albite, K feldspar, garnet, pyroxene, scapolite, calcicamphiboles, chlorite, epidote, calcite, wollastonite and gypsum.

The timing of alteration can be subdivided as follows (Figure 26):

- Pre-mineralization phase: This phase is characterised by silicification, calc-silicates and low grade metamorphism of the limestone host rock. Wollastonite, calcic-amphiboles (tremolite and actinolite), calcic-pyroxenes, apatite, quartz and calcite are associated with this phase. Textures included fine grained, euhedral pyroxenes within the limestone giving a green tint to an otherwise unaltered appearance to the limestone.
- 2. Ore phase which can be subdivided as:
 - a. <u>Skarn stage</u>, replacing limestone: This stage typically contains calc-and alumina-silicates, massive iron oxide mineralization and minor iron rich sulphides. The vast majority of magnetite mineralization is formed during this phase at temperatures >500°C and characterised by intergrown coarse epidote, calcic-pyroxenes (augite and diopside), calcic-garnet (andradite), calcic-amphiboles (tremolite and actinolite), magnetite, calcite, and pyrite with minor titanite (a calcium titanium silicate) and apatite (Figure 27 A & D). Alteration has obliterated primary rock textures. The massive magnetite lenses formed in this stage are bedding parallel.
 - b. <u>Late sulphide stage</u>: This stage is characterised by an evolving sequence of sulphide minerals, hosted by calcite, and associated with extensive sodic and potassic alteration. The sulphide-rich calcite veins contain sparry white calcite, albite, magnetite and minor quartz, and carry very fine sulphides, including pyrite, chalcopyrite, sphalerite, galena and arsenopyrite (Figure 27 B). The gangue mineralogy also includes scapolite and chlorite. Sulphide rich alteration zones can contain up to 10 % each of chalcopyrite and pyrite. Fine veinlets of galena are deposited last. Other late stage minerals include trace silver telluride, coarse gypsum veins as well as barite with associated cuprite.
 - c. <u>Chlorite stage:</u> This stage is characterised by coarse grained sparry calcite veins that host coarse euhedral magnetite and coarse specularite (specular hematite) with a chlorite rich selvage. There is also development of widespread disseminated chlorite. Temperature of vein formation is estimated at 350 350 °C.
- 3. <u>Post mineralization phase:</u> This phase is distinguished by coarse, cross-cutting veins which contain varying amounts of calcite, K feldspar and albite, and are barren of any metal bearing minerals. It is widespread, surrounding the deposits and extending for several kilometres into the host rock. It is characterised by coarse, euhedral scapolite (Figure 27 C) and albite porphyroblasts (scapolite & albite = sodic alteration), and by silicification of the host limestone. Temperatures are estimated at 100 140°C.

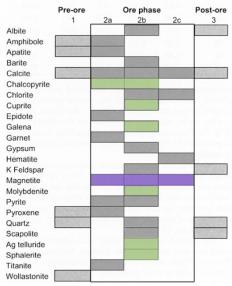


Figure 26: General paragenesis for the Valerianovskoe iron skarns (Source: Hawkins et al, 2010)

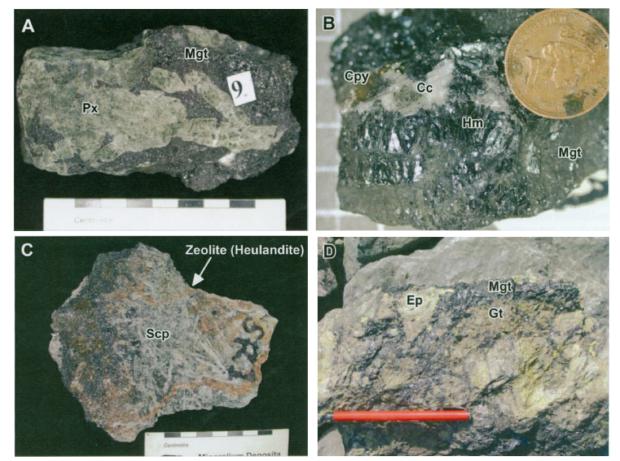


Figure 27: Alteration assemblages.

A: magnetite (Mgt) & calcic-pyroxene (Px) from the *skarn stage*. B: sulphide-rich calcite vein with massive magnetite & vugh fill of calcite (Cc), hematite (Hm) & chalcopyrite (Cpy), from the *late sulphide stage*. C: blocky magnetite on the left (*chlorite stage*), & coarse scapolite on right from the post-mineralization phase. D: skarn alteration in limestone with magnetite, garnet (Gt) & epidote (Ep) from the *skarn stage*.

(Source: Hawkins et al, 2010)

9 EXPLORATION

Exploration to date is all considered historical and is decribed above in Item 0.

Aside from reviewing historical material (IMC Montan, 2010), KMI have not completed any non-drilling exploration such as airborne, ground or down hole geophysical surveys within the contract area. The deposits are covered by deep cover rocks and geochemical surveys have not been conducted.

10 DRILLING

KMI completed twenty two (22) diamond drill holes from 2010-2012 to help validate the historical drilling and infill along existing drill lines (Figure 28, Table 9). In the Northwest Deposit at total of twelve (12) drill holes were completed with the drill holes angled to best intercept historical drilling. In the Central Deposit a further ten (10) vertical drill holes were completed. In total 9,049m of drilling and 2,174 samples sent for assaying. Comparisons between the historical and current drilling have been made for the iron content in all regions.

In 2013 KMI completed a further 40 drill holes for a total of 11,580.8 m (Table 9). Twenty two of these holes were for hydrological and geotechnical studies. At the time of writing this report drilling is ongoing at the project. The final assay and QAQC results from 2013-2014 drilling were not available for inclusion in this revised mineral resource estimate and will be incorporated into subsequent estimate updates.

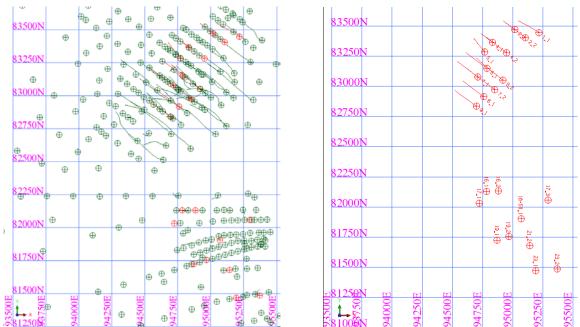
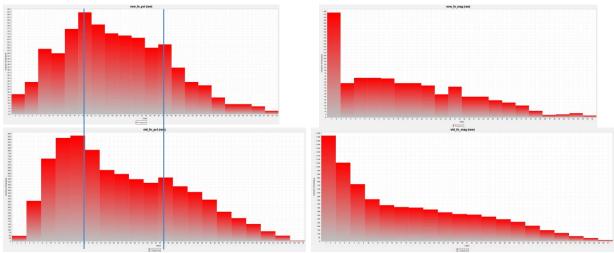


Figure 28: Historical and current drill collars with 2012 drilling in red.

Table 9. Drilling statistics for the project.				
Period	Number of Holes Drilled	Total Metres Drilled	Comment	
not recorded	204	100,231.2	Historical	
1950-1959	109	26,343.9	Historical	
1960-1967	98	37,607.3	Historical	
2010	3	828.7	KMI	
2011	2	1,042.5	KMI	
2012	17	7,179.6	KMI	
2013	18	6,810.8	KMI – results not available	
2013	22 (geotechnical and hydrological)	4,770.0	KMI – results not available	


10.1 Accuracy & Reliability

In terms of the historical drilling, the core recovery for mineralization and enclosing rocks as recorded was generally good, i.e. not less than 80% (the GKZ, State Commission on Reserves requires not less than 70% recovery). However, IMC Montan (2010) noted that at least 14 boreholes were recorded as being substandard in terms of core recovery. Also noted by IMC Montan, a number of the historical holes were drilled down dip therefore the true thickness requires review. These issues will need to be taken into consideration when validating the historical database during upcoming mineral resource estimation when the current drilling program is completed.

Initial results from the recent drilling (2010-1012) correlate well with the historical drilling. The review of the new confirmation drilling data has determined the following:

- The current drilling has confirmed the location and thickness of the mineralized zones intersected by the historical drilling in the sections recently drilled.
- The new drilling has confirmed that the tenor of the mineralization (as illustrated by the matching colour coding in sections in Figure 32); that is, current assay results indicate historical assays are of similar values.
- Where additional sampling does overlap historical un-sampled intervals the grade has dropped but still holds some mineralization which is within the economic cut-off grade.
- The iron and magnetite values of the old and new drilling are similar, except for a possible smearing of grades due to large sample intervals in the low grade, disseminated mineralization in the old drilling.

A preliminary correlation analysis has been carried out to compare the total Iron (Fe) and Magnetite (FeM) results in both historical and current drilling. Due to the selective sampling used in the historical drilling, direct comparisons (i.e. matching sampled intervals in twin holes) are not possible.

Iron: Current (top) and Historical (bottom) Magnetite: Current (top) and Historical (bottom) Figure 29: Histogram comparison of old and new iron and magnetite

Basic histograms show similar distributions, with two peaks for iron (one at 18 and one at 38, Figure 29) and good comparison of values above 18 % Fe but evidence of different patterns below this number. The new data shows a third, lower peak around 10% Fe but the old data a large broad population around this level not seen in the new data. There was little emphasis placed on this low grade domain in the old work, sample intervals were longer, and this may explain the differences. Higher grade areas compare well. The same result is seen in the magnetite comparisons.

Q-Q plots have been used to compare the historical data and current drilling data (Figure 30). Q-Q plots compare the assay data distributions by quartile where the percentiles from each data set are plotted against each other. It is essentially a plot of sorted data set 1 against sorted data set 2. Q-Q plots are used to compare non-twinned data. If the two distributions being compared are similar, the

points in the Q–Q plot will approximately lie on the 1:1 line. If the distributions are linearly related, the points in the Q–Q plot will approximately lie on a line, but not necessarily on the 1:1 line.

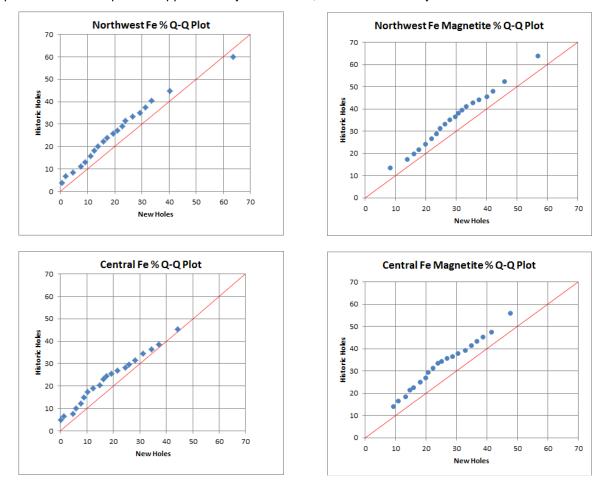


Figure 30: Q-Q plots for Iron and Magnetite at both the Northwest (top left and right) and Central (bottom left and right) deposits

MA would consider that the difference in both deposits is due to the problems discussed above with the low grade sampling creating a shift in the QQ plots.

MA notes whereas the Central Deposit Q-Q graph for FeMag % is similar to that for the Northwest Deposit. The Q-Q plot for the Fe% results also shows positive bias seen in Northwest Deposit comparison however indicates less bias for highest grades.

11 SAMPLE PREPARATION, ANALYSES AND SECURITY

The Sampling and Processing Flow Chart is shown in Figure 31. Core from the current drilling was sampled according to geological/mineralogical boundaries at no less than one metre intervals within the selected zones. All core was sawn in half or quarters using a diamond saw along orientation lines drawn by the geologist. Sample numbers along with the hole and intervals were recorded in a log book by the saw operator and input into the appropriate worksheets by the geologist. Blanks were inserted after each 20 sample interval, using a stockpile of unmineralized core, whereas, duplicates were added after each 25 sample interval, where possible within mineralized zones.

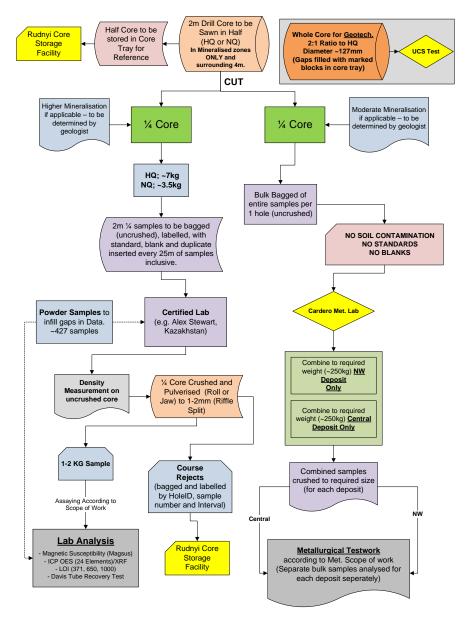


Figure 31: Sampling and Processing Flow Chart

A stockpile of certified standard samples was purchased from a reputable standard distributor for iron ore deposits. The standards were packed as 100gm quantities into sealed foil envelopes. These have been inserted into the sample stream after each 20th sample (including normal samples, blanks and duplicates in that 20-sample tally).

Standards were purchased from Geostats who are based in Perth, Western Australia and delivered to site. The standards were selected based on the characteristics of the standard matching the characteristics of the lithology and mineralization being drilled. They are similar in colour, mineralogy, oxidation and grades of the various metals being tested. Various grades should be selected at and around the perceived lower economic grade cut-off, the average grade, and the upper grades (but less than the high cut-off grade) of the deposit.

An international certified laboratory should complete all samples. The lab would have standard procedures to process the provided samples. Standard procedures include coding and weighing of the received samples, crushing and pulverisation, washing and rifle splitting.

Sample preparation and analysis methodology (Table 10) is provided as a "scope of work" from a reputable consulting Metallurgist and should include:

- Elements to be tested for and analytical methods to be used;
- A regime for the routine collection of Magnetic Susceptibility (Magsus) readings on the pulps, using a standard method in a controlled environment;
- Davis Tube Recovery tests on all sample intervals;

Table 10: Summary Table of the Assay Suites and samples taken for current drilling						
HoleID	Date Received	Total No. of Samples	Testing Methods	Elements Tested (including density)		
1_1	Nov 2012	41	Davis Tube.	Density, LOI, Fe(mag), Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga,		
16_1	Oct 2012	70	ICP-MA. ICP-BF	Hg, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, S, Sb, Sc, Se, Si, Sn, Sr, Ta,		
16_2	Oct 2012	93	, -	Te, Ti, Tl, V, W, Y, Zn, Zr		
17_1	Feb 2012	78	Chemical & Spectral	Fe, Fe(mag), FeO, S, P, Sb, Mn, Pb, Ti, Zr, As, W, Cr, Ni, Bi, Ba, Be, Mo, Sn, V, Cd, Cu, Y, Zn, Ag, Co, Sr, B*		
17_3	Oct 2012	146				
18_1	Nov 2012	140	Davis Tube,	Density, LOI, Fe(mag), Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga,		
19_1	Nov 2012	159	ICP-MA, ICP-BF	Hg, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, S, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Ti, Tl, V, W, Y, Zn, Zr		
19_2	Nov 2012	92		10, 11, 11, 4, 44, 1, 21, 21		
2_1	Feb 2012	19	Chemical & Spectral	Fe, Fe(mag), FeO, S, P, Sb, Mn, Pb, Ti, Zr, As, W, Cr, Ni, Bi, Ba, Be, Mo, Sn, V, Cd, Cu, Y, Zn, Ag, Co, Sr, B*		
2_2	Nov 2012	16				
21_2	Nov 2012	36	Hg, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, S, Sb,	Density, LOI, Fe(mag), Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga,		
23_1	Oct 2012	34		Te, Ti, Tl, V, W, Y, Zn, Zr,		
23_2	Nov 2012	35		10, 11, 11, 11, 11, 11, 11,		
4_1	Feb 2012	23	Chemical & Spectral	Fe, Fe(mag), FeO, S, P, Sb, Mn, Pb, Ti, Zr, As, W, Cr, Ni, Bi, Ba, Be, Mo, Sn, V, Cd, Cu, Y, Zn, Ag, Co, Sr, B*		
4_2	Nov 2012	92	Davis Tube.	Density, LOI, Fe(mag), Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga,		
5_1	Oct 2012	61	ICP-MA, ICP-BF	Hg, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, S, Sb, Sc, Se, Si, Sn, Sr, Ta, Te, Ti, Tl, V, W, Y, Zn, Zr		
6_1	Feb 2012	70	Chemical	Fe, Fe(mag), S, P		
6_2	Nov 2012	66				
7_1	Nov 2012	164				
7_2	Nov 2012	79	Davis Tube.	Density, LOI, Fe(mag), Ag, Al, As, Ba, Bi, Ca, Cd, Ce, Co, Cr, Cu, Fe, Ga,		
8_1	Nov 2012	117	ICP-MA. ICP-BF	Hg, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, S, Sb, Sc, Se, Si, Sn, Sr, Ta,		
9_1	Oct 2012	91	Te, Ti, Ti, V, W, Y, Zn, Zr	Te, Ti, TI, V, W, Y, Zn, Zr		
Powder Samples	Oct 2012	427				

12 DATA VERIFICATION

12.1 Data verification procedures

12.1.1 Site visit

Mr Vigar conducted a site visit from 26th to 30th March 2012. The visit consisted of visiting the laboratory in Karaganda, visiting the drill site of the current confirmation drilling program, inspecting drill core and the core storage in Rudniy and talking to the site geologists Sergey Debrov and Genadyi Shistak. The Karaganda lab was proposed to conduct the geological assaying for the project's requirements, however, it was decided following the visit that the laboratory was unable to meet the international standards required and a second laboratory in Moscow, (Stewart Group) was chosen instead.

Mr Vigar also conducted a site visit from 3rd December to 9th December 2013. Time was spent with the site geologists to discuss and understand in detail the geology and problems associated with sampling, preparation, its logistics and requirements of Kazakh and international certified laboratory analyses.

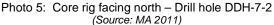
MA visited current drill sites (Photo 5, Photo 6), located an historical drill collar (Photo 4), examined the core shed and core storage (Photo 7), original report files, and viewed and examined mineralized core (Photo 9, Photo 10). MA also visited the adjacent SSGPO operations (Photo 2, Photo 3, Photo 11 and Photo 12).

Due to the thick overburden, there is no outcrop to view.

Photo 4: Drill collar of historical DDH 414 (Source: MA 2011)

12.1.1.1 Drill Site - DDH 7-2. DDH 16-1

MA representatives visited (Photo 5) to observe drilling start-up, and progress (Photo 6). The first hole viewed was DDH 7-2, which was drilled towards 310 degree azimuth at -60 degrees dip. The drill site is located in the Northwest Deposit. Elevation of the area is approximately 270 m RL and very flat. The rig used is a hydraulic Boart Longyear rig, a conventional wire-line diamond core rig which was enclosed due to the cold weather.



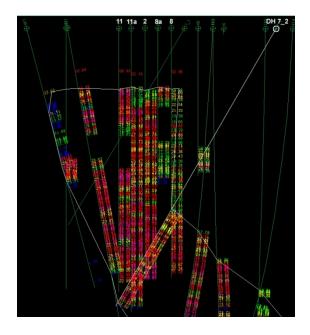
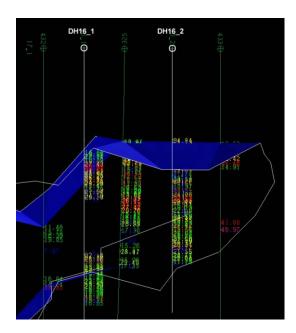


Photo 6: Drill hole DDH-16-1, looking north (Source: MA 2012)


The closest historical collar to DDH 7-2 was historical DDH 414, but due to the inclination of DDH 7-2, this is some way off in terms of the location of the mineralized zone. Historical drill holes DDH 11, 11a, 2, 8 and 8a are all in close proximity to the drill stem of DDH 7-2 (Figure 32). DDH 16-1 is located in the Central Deposit.

The drilling procedures were observed and drill core recovery appears to be satisfactory. .

In order to further strengthen the confidence in the historical data against what is highlighted in Section 10.1 above and in Figure 32 below, MA have proposed four (4) holes be drilled as twin holes to directly compare the historical drilling. At this point historical drill holes DDH 174 and 11a from the Northwest Deposit as well as DDH 59 and 1 from the Central Deposit have been recommended due the large amount of continuous sampling that has been carried out previously within the mineralized zone.

Confirmation Hole 7-2 (Northwest Deposit)

Confirmation Hole 16-1 & 16-2 (Central Deposit) Note: un-sampled intervals within 16-1.

Figure 32: Comparison of 2012 drill program iron assay results against historical

12.1.1.2 Core storage facility

MA noted that the current core storage facility is inadequate for the planned 4,270 m drill program, and can only be considered as a temporary solution to store the core (Photo 7). KMI will look at acquiring some of the available housing near the Lomonosovskoye Project site which will be used to store the core.

Photo 7: Lomonosovskoye Project Core storage (Source: MA 2011)

Photo 8: Drill core from DDH 16-1 at about 280 m (Source: MA 2012)

12.1.2 Independent samples

No independent samples were collected due to the inability to deliver iron samples though the local customs clearance. The historical and new drill core was viewed (Photo 7, Photo 8) and evidence of iron mineralization noted (Photo 9, Photo 10).

Photo 9: Mineralized core – historical DDH C21-2 (Source: MA 2011)

Photo 10: Mineralized core – new hole DDH 7-2 (Source: MA 2012)

12.1.3 Database verification

The database was reviewed for all new and existing historical data relevant to the areas of mineral resource estimation described in this report. A list of duplicates was cross examined against the current database for missing samples in order to add additional assay results and verify historical drilling records. Repeated samples and overlaps were removed from the database for modelling and estimation purposes.

12.2 Limitations on verification

No independent validation sampling was conducted by MA due to the inability to export samples for assaying in an independent laboratory outside Kazakhstan on a timely manner. However mineralization was observed in the historical and new drill core (Photo 9, Photo 10).

12.3 Opinion on adequacy of data

As previously discussed using the basic statistics and Q-Q plots alongside a visual inspection of validation against historical drilling, there does seem to be a basic correlation which gives a good confidence in the historical assays. Further drilling and test work in twinned holes which is planned for 2013-2014 will further assist in our confidence levels of the historical data.

13 MINERAL PROCESSING AND METALLURGICAL TESTING

Lomonosovskoye iron mineralization will be concentrated in a beneficiation plant to separate its magnetite content to obtain concentrate, pellet or other value added product for sale to customers. The metallurgical testing carried out in Soviet times has provided some process parameters to design the preliminary processing route and main beneficiation plant technology for Lomonosovskoye deposits.

The confirmation drilling program executed between 2010 and 2012 has provided some core samples to carry out new metallurgical tests works. These are underway and results are expected in 2014.

13.1 Sample selection criteria

The criterion to select metallurgical samples focuses on the first 5 years of the production mine plan. This plan is the outcome of a scenario planning analysis, which has allowed management to select the scenario, which gives the best combination of value and risk – a beneficiation plant of 16 Mt/y. The plan view of the mine at the end of Year 5 (Period 7) together the collar coordinates of the confirmation drill holes are shown in Figure 33.

13.2 Drill hole identification for metallurgical sampling

Required procedures and methods for logging, core cutting, sampling and transport are described in Section 10 and 11 of this report. The objective here is to identify the boreholes and intervals where samples should were taken to obtain around 250 kg of sample for the Northwest and Central deposits.

Table 11 indicates the boreholes considered for sampling in each deposit, including a weighting factor for sample preparation:

Table 11: Drill holes for metallurgical samples				
Deposit	Borehole	Weighting	Interval (m)	
Northwest	4-1	10%	135.5 – 193.6	
Northwest	4-2	20%	130.0 – 350.0	
Northwest	5-1	50%	135.0 - 305.0	
Northwest	6-1	20%	130.0 - 350.0	
Central	16-2	15%	100.0 – 150.0	
Central	17-3	20%	100.0 – 170.0	
Central	18-1	50%	100.0 - 200.0	
Central	19-2	15%	100.0 - 160.0	

The weighting factor is a visual approximation that considers the location of the borehole within the 5-year volume. In the Central deposit, for instance, borehole 18-1 crosses the volume close to its centre whereas the other boreholes, 16-2, 17-3, and 19-2, are in the periphery of that volume.

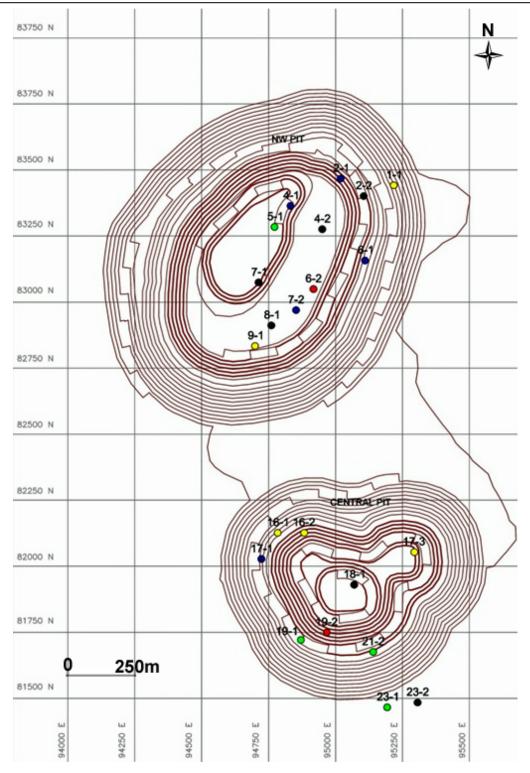


Figure 33: End of Year 5 production (Period 7) scenario and location of borehole collars

13.3 Sample preparation

Samples taken from the core intervals suggested in Table 11 were mainly mineralization. This was verified using chemical assays, when available, logging data, and magnetic susceptibility measurements. To simulate the open pit operation, samples were taken considering the open pit bench height, that is, about 10 m length for vertical holes and its equivalent for inclined ones. The weighted average grade of the whole sample was defined to be greater than 20 % Fe total, which is

the cut-off grade for the first 5 years of the production plan. This means 10-metre samples for vertical holes may contain waste or low-grade mineralized rock. This is akin to the internal dilution concept of selective mining units, SMU, or block size in open pit mining operations – where internal waste cannot be separated from the mineralization.

The average grade for the first 5 years of the production plan is $28.5 \, \%$ Fe total $-29 \, \%$ Fe total for the Northwest Deposit and $27.8 \, \%$ Fe for the Central North Deposit. These were the targeted grades to ideally achieve with the 250-kg sample for each sector.

13.4 SGS mineral services preliminary results

Preliminary results are available for testwork conducted by SGS Mineral Services (Ontario) in 2014 on samples from the Northwest and Central deposits showed that a final grind size of 100% passing 75 microns was necessary to achieve a concentrate grading 65% Fe or higher. Flow sheets combining magnetic separation were employed to generate the final concentrates and the Northwest Deposit samples were shown to recover ~30% weight and Fe: 60-65% to the final concentrates, while the Central zone samples were shown to recover ~35% weight and Fe: >65% to the final concentrates. The difference in weight and iron recoveries between the two zones is expected due to the difference in magnetite head grade between the two zones at approximately 30% and 35% Satmagan respectively.

Additional testwork is currently being conducted to further establish the metallurgical performance of samples from both zones.

14 MINERAL RESOURCE ESTIMATES

This revised estimate for the Lomonosovskoye Project is based on the same drill database as used in the report prepared in compliance with National Instrument 43-101 - Standards of Disclosure for Mineral Projects ("NI 43-101"), which was dated December 18, 2012 (and resubmitted on SEDAR on May 9, 2013) (the "December 2012 report"), but with a re-interpretation of the geological and geophysical data and an estimation method that includes an allowance for bulk open-pit or underground mining.

Two main deposits, the Northwest and Central deposits have been drilled from surface with diamond and RC drilling. Drill access is dictated by topography and cleared drill sites. Original resource estimates carried out by IMC Montan in July 2010 clearly separated the two areas of mineralization based on the following assessments:

"Mineralization occurrence in the NW Site is represented by relatively high-temperature, early metasomatic formations along the contact between lower sedimentary (limestone) and upper volcanic-sedimentary (tuffite) members of the Sokolovsky Suite. The ore is surrounded by garnet-pyroxene skarns and forms a skarn-ore zone that is over 1,200 m along strike in a south-western direction (azimuth 220°), and down dip to a depth of 1,600 m with an average ore body thickness of 112 m. The site has a complex block structure due to the widespread development of disjunctive faults. The NW ore alternates with mineralized skarns and metasomatites. The border between them is determined by chemical composition. Ore bodies are predominately of seam-like and lenticular shape. Dip angles vary from 50° to 70° in the upper parts of the cross-section (to an elevation -600 m), to nearly vertical at depth (Figure 3-2). Average thickness of ore bodies varies from 17.5 to 142.0 m, with a minimum of 6.4 m and maximum of 303.4 m.

Mineralization in the Central Site formed later than ores in the NW area and is represented by stockwork-like bodies of vein breccia and vein magnetite ores associated with a fractured zone 10-100 m thick along the contact between a diorite intrusion and the host volcanic rocks of the Kurzhunkulsky Suite. Ore bodies have irregular short prism or nest-like shapes. The zone is traced along strike over 1,600 m and to a depth of 600 m in the north, and to 900 m in the south. Average thickness of the ore bodies varies from 13.5 to 68.0 m, with a minimum of 10.3 m and a maximum of 139.0 m."

MA is in broad agreement that the two areas of mineralization are indeed separate events and therefore treated them as separate deposits for modelling purposes, however in the central zone mineralization was bulked together and treated as more continuous zone of mineralogy than that considered by IMC Montan in July 2010.

14.1 Approach

Historical drilling data obtained between the 1950's to the 1980's and twenty-two (22) confirmation drill holes completed in 2010 through 2012 were used to re-interpret and re-estimate the resource at the Lomonosovskoye Iron Project.

The 2014 mineralization domains were redefined by 3D wireframes using drill assay data, detailed geology logs and down-hole magnetic susceptibility logs. The deposit was divided into 7 mineralization domains based on the mineralogy of the skarn mineralization and continuity in 3D. A nominal 10% Fe cut-off grade, in conjunction with lithological logging, was used to define these 7 domains.

Mineralized domains were divided into blocks above and below 20% Fe using an indicator approach. Grades and mineralization percentages were then estimated by Ordinary Kriging into blocks 15x15x10m in size within each domain.

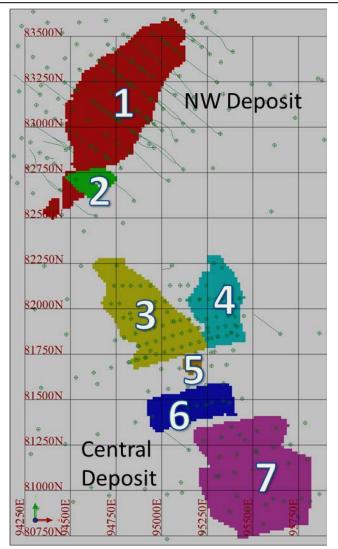


Figure 34: Plan view of the drill hole distribution and estimation domains across the Northwest and Central deposits (green drill traces)

14.2 Supplied Data

MA was supplied with the drill hole data as Microsoft Excel spreadsheets and Microsoft Access database. Initial raw data was translated from Russian into English by TOO Geoservice (TOO). MA imported the supplied Excel spreadsheets and old MS Access database into a new MS Access database for use in Surpac™. Additional data, such as new drill hole assays, historic and new down hole magnetic susceptibility data, and historic and new geological logging was supplied as Excel spreadsheets that were validated and imported into the new MS Access database. Database structure used is presented in Table 12.

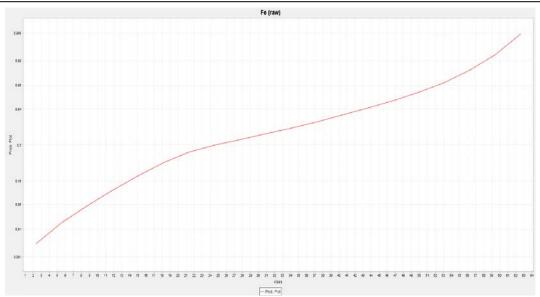
Table 12: Master Database Structure						
Table Name	Description					
Collar	Location of hole id and collar coordinates					
Assay	Drill hole assay results and Lithology					
Survey	Down hole drill holes survey data					
Lith_orig	Down hole geological logging data supplied by KMI					
Magsus	Historic down hole magnetic susceptibility logs scanned from paper copies					
Magsus_newholes	Down hole magnetic susceptibility log data for new holes supplied in .LAS format					

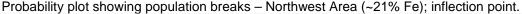
Historical drill hole data collated from hardcopy paper records from the 1950's to the 1980's is summarised in Table 13 along with the current confirmation drilling to date. Database extents are summarised in Table 14.

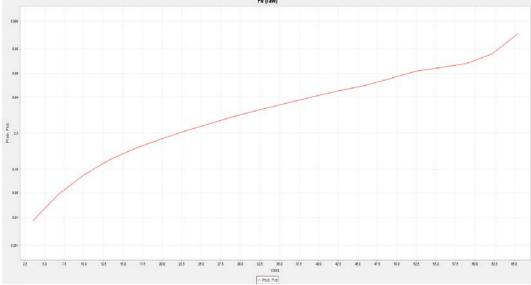
Table 13: Drill Holes Summary									
Phase of Drilling No. of Drill Holes No. Samples Total metres Average metres									
Historical	412	12,496	130,940.9	407					
Current	27	1,881	111,10.66	411					

Table 14: Database Extents							
Min Max							
Northing	80129.88	84644.39					
Easting	91868.57	96858.71					
RL	193.92	214.46					
Depth	10	2000					

14.3 Dimensions


The Lomonosovskoye Iron Deposit can be clearly separated into two main zones: the Northwest and Central deposits. The Northwest Deposit strikes 040° for 1,200 m dipping steeply (85°) towards east-southeast (128°) in the lower portion and at 60° in the upper portion. The overall horizontal width of the deposit is on average 460 m thinning to 200 m at either extremity. It continues to hold its horizontal width with depth until terminating with a vertical distance of approximately 1,400 m.


In contrast, the Central Deposit strikes south-southeast (145°) for a total length of 2,300 m. The Central Deposit is also split into two domains; North and South, which are possibly separated by a controlling structure running northeast-southwest. Further geological information would be required to verify this. The Central North zone has been split again to allow for what looks like structurally controlled mineralization following the northeast-southwest trend. The average horizontal width in the North is 200 m whereas the Southern portion begins is 550 m on average. The Central North zone northern section is dipping northeast (050°) at near vertical (88°) and is largely continuous. The Central section along structure is dipping northwest (280°) at 80°, the Central South zone dips to the southeast (128°) a 30° in the top 400 m and then more steeply (65°) below this depth. There is also a possibility the Central zone is open at depth. Deeper drilling may be required to confirm this.


14.4 Cut-off grades

Original resource estimates were based on a 20% Fe cut-off grade for both areas. This is considered standard under Russian reporting rules, but coupled with a lack of Fe assays in the database and limited lithological data the mineralized zone model becomes very discontinuous geologically. Returning to the analysis of the raw data statistics, a 20% Fe cut-off grade seems reasonable for the Northwest area, whereas a more realistic lower grade Fe cut-off for Central would be 10% (Figure 35). This allows for more continuous mapping and modelling of the mineralized body and can be compensated with an ore recovery loss factor, multiple estimation passes and block model and reporting constraints.

Probability plot showing population breaks – Central Area (~10% Fe); inflection point. Figure 35: Probability plots for Northwest and Central Areas

14.5 Geological and mineralization interpretation

3D geological and mineralization modelling is the visual representation, derived from geological data that has been captured and interpreted. A 3D model is a representation of interpretations from sparse, often insufficient data. As the information upon which it is based is not perfect, it cannot be an exact representation of reality, but can be a close approximation. The only time you will know with confidence what was in the ground is when it is mined out or perform very close grade control drilling during the mining process. Before that, the interpretation is from drill holes, trench samples, surface samples or mapping onto sections or plans.

A 3D geological model consists of the following:

- Drill holes in 3D space
- A topographical surface
- Any structural features e.g. faults
- A volume of the mineralized body constructed from plans and sections

 A block model with grades or other variables interpolated via geostatistics from the drill hole data.

It is important to keep in consideration the uses of the geological model before attempting a model. The assumptions on the interpretations must be checked and validated to ensure consistency.

Drill hole sections were displayed on screen using Surpac[™], a geological modelling software, from which sections were digitised. The known geology, lithology and assay results from both the historical and current drilling were all considered.

3D wireframes defining mineralization boundaries used in the 2012 estimate were re-interpreted, using a combination of recently loaded legacy lithology logging data and down hole magnetic susceptibility. Re-interpretation resulted in a more tightly defined boundary than the general skarn outline previously used. This was based on the realisation that within lithology broadly defined as "skarn" there were significant un-mineralized portions (based on magnetic susceptibility). Conversely, there are also mineralized intervals within rock types not specifically indicated as skarn in the logging.

14.6 Data preparation and statistics

Statistical analysis of the drilling data was carried out using the Gemcom Surpac[™] geological software package. Surpac is currently used by many major global mining houses.

Prior to a statistical analysis grade domaining is normally required to delineate homogeneous areas of grade data. Statistical analysis does not take into account the spatial relationships of the data. In the case of Lomonosovskoye's resource estimate, the Northwest and Central deposits were modelled as separate domains due to contrasting geological and structural controls. Central was then further divided due to an interpreted structural feature which trended northeast-southwest through the deposit.

The Lomonosovskoye database was connected directly to Surpac[™] (geological and mining software) for data display, down-hole compositing, wire framing of homogeneous grade domains and block model estimation.

14.6.1 Missing data

Areas of missing Fe% assay and Femag % data were treated with the following protocols:

- Where a sampled interval had a Fe% assay but no Femag%, a value for Femag% was estimated using the Fe% assay-10%.
- Where there were no samples for an interval, but a calibrated down-hole magsus data was available, then a value for Fe% and Femag% was estimated from the magsus data.
- Where there were unsampled intervals within defined mineralized domains with no data of any kind, a value of 10% Fe was assigned. This approach was used on the basis that the selective historical sampling was targeted at the >=20% material so missing data for this data set are rare. The converse is also true, in that there are many missing intervals in the <20% Fe data set, even after the holes with down-hole magsus data are accounted for, as there are many holes with large un-sampled intervals and no magsus data. Introduction of low values in such a high proportion would bias the final result, so estimation for the <20% Fe blocks only used actual assays.</p>
- Work on converting historic down hole magnetic susceptibility data into a format that could be
 used for deriving Fe and Femag % values was still ongoing at the time of preparing this
 resource estimate. No values for Fe and Femag calculated from magnetic susceptibility were
 used.

14.6.2 Compositing

The objective of compositing data is to obtain an even representation of sample grades and to eliminate any bias due to sample length (Volume Variance).

Compositing should be done on multiples of the original sampling interval to minimise artificially lowering the variance. Assay lengths should not be split into smaller composites lengths, as this practice results in an artificially low variance for the modified support as adjacent composites could be identical in value. (Glacken and Snowden 2001).

Raw drill hole assays were composited on five metre intervals, which was above the majority of sample lengths for both the North-western and Central domains, but allowed for all statistic variables to stabilise.

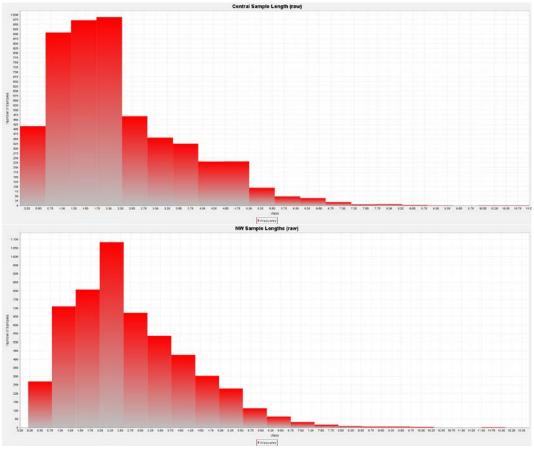
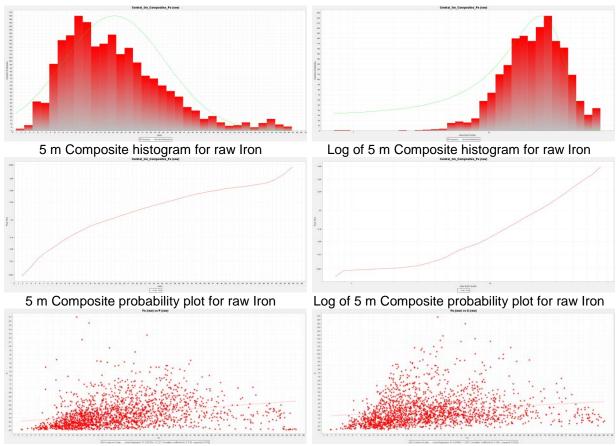


Figure 36: Histogram of all sample lengths for the Northwest and Central deposits


14.6.3 Basic statistics

Basic statistics report the univariate statistical characteristics for each geological domain. The basic statistics are also used as a validation of the later resource estimates. The univariate statistics were generated for all mineralized domains at Lomonosovskoye.

These statistics are based on 5 metre composites, which was decided based on variable sample spacing down the historical holes and the lack of samples in some areas within the mineralized zone. This in turn will minimise the bias of areas with many samples compared to areas with less. The extracted composites have been edited to highlight partial composites with lengths less than 2.5 metres (less than 50 % of total composite length). Table 15 shows the overall maximum, mean and ranges for all mineralized domains. Figure 37 and Figure 38 display the histograms, probability plots in both raw and log format along with the correlations between Iron mineralization and impurities of Phosphorous and Sulphur for both the Central and Northwest deposits respectively.

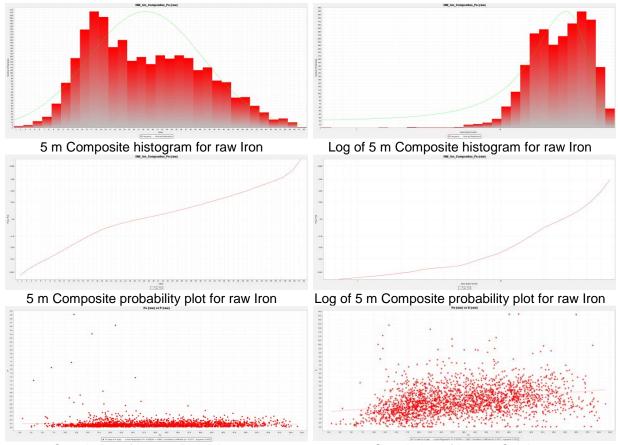


Table 15: Basics statistics for 5 m composites by domain									
Domain	Count	Mean	Maximum	CV					
1	3660	24.23	61.80	0.536					
2	86	24.46	54.69	0.519					
3	1204	20.61	62.15	0.515					
4	891	19.97	53.48	0.515					
5	16	17.36	30.71	0.414					
6	100	24.87	44.21	0.368					
7	738	22.81	66.56	0.656					

Correlation of Iron vs Phosphorus Correlation of Iron vs Sulphur Figure 37: Basic Statistics for Central Deposit

Correlation of Iron vs Phosphorus Correlation of Iron vs Sulphur Figure 38: Basic Statistics for Northwest Deposit

14.6.4 Grade capping

Capping is the process of reducing the grade of outlier samples to a value that is representative of the surrounding grade distribution. Reducing the value of an outlier sample grade minimises the overestimation of adjacent blocks in the vicinity of an outlier grade value. At no stage are sample grades removed from the database if grade capping is applied.

Fe assay results were capped at the 99.5 percentile for the Northwest Deposit (domains 1 and 2) and 99.9 percentile for the Central Deposit (domains 3-7). In general, this only reduced the grade marginally (Table 16). No capping was applied for Magnetite content (FeM%).

	Table 16: Grade capping										
	Und	capped	Composite	Data		Capped Cor	nposite [Data		Grade	
Domain	Count	Mean	Maximum	CV	Count	# Capped	Mean	Сар	CV	% Cap	% Δ
1	3660	24.23	61.80	0.536	3660	19	24.22	57.5	0.54	0.52%	0%
2	86	24.46	54.69	0.519	86	1	24.45	54.3	0.52	1.16%	0%
3	1204	20.61	62.15	0.515	1204	2	20.60	58.4	0.51	0.17%	0%
4	891	19.97	53.48	0.515	891	1	19.97	53.1	0.52	0.11%	0%
5	16	17.36	30.71	0.414	16	1	17.36	30.7	0.41	6.25%	0%
6	100	24.87	44.21	0.368	100	1	24.87	44.1	0.37	1.00%	0%
7	738	22.81	66.56	0.656	738	4	22.81	65.6	0.66	0.54%	0%

14.6.5 Grade indicators

Composites in each mineralized domain were assigned an indicator value of 0 or 1 depending on whether they were below or above a cut-off value of 20% Fe. 20% Fe was selected as a reasonable approximation of the natural break between high grade and low grade mineralization.

14.6.5.1 High-grade and low-grade subdomains

High-grade and low-grade subdomains were flagged within the block model through variography and estimation of indicators for each block varied by domain. Only data within that domain was used. Examination of distribution and grades of indicators between 0.4 and 0.6 were examined. The 0.4 indicator was selected as giving the most continuous domains and still reasonable grades. Each mineralized domain was thus divided into two subdomains – high grade and low grade. Details of indicator variography are discussed further in section 14.7.

14.7 Variography

The most important bivariate statistic used in geostatistics is the semi-variogram. The experimental semi-variogram is estimated as half the average of squared differences between data separated exactly by a distance vector 'h'. Semi-variogram models used in grade estimation should incorporate the main spatial characteristics of the underlying grade distribution at the scale at which mining is likely to occur.

The semi-variogram analysis was undertaken for individual elements within each major grade domain that contain sufficient data to allow a semi-variogram to be generated. Three dimensional (3-D) semi-variograms are generated using three orthogonal principal directions.

14.7.1 Methodology

For each variable to be examined, the experimental variogram containing the clearest structure and greatest difference in range between each direction was selected for use in model fitting where possible. The variogram modelling process using variables is described as follows:

- Experimental variograms with small lags orientated down hole to aid interpretation of nugget effect (i.e. down hole variogram).
- Omni-directional variogram to determine optimal lag distance for directional component of variogram.
- Variogram map, computing 12 directions in the reference plane and normal to the reference plane.
- Directional variogram with 2 directions in reference plane (down dip) oriented parallel to the average orientation of the wireframe models of each domain, plus variogram normal to the plane (across strike).

14.7.2 Variogram models – grade indicators

Four (4) of the defined mineralized domains contained enough data to be able to generate useable variogram models for grade indicators (Table 17). Two-structure exponential models provided the best fit to experimental variograms, with the short range in all domains between 15 m and 30 m and the longest range in domain 7 of 300 m.

Table 17: Variogram parameters by domain - grade indicators.										
Deposit Domain Nugget Maximum Range Major / Semi-major Major / Minor										
Northwest	1	0.03	265	5.3	8.8					
Central N	3	0.06	150	1	7.5					
Central N	4	0.05	150	1	7.5					
Central S	7	0.05	300	1	6					

14.7.3 Variogram models - grades

Variogram models were created for Fe% (and Femag%) based on informing samples within high grade and low grade subdomains. As for the indicators, only 4 domains contained enough samples to generate useable variograms. Two-structure exponential models provided the best fit to experimental variograms, with the short range in all domains between 18 m and 30 m and the longest range in domain 1 low grade 7 of 350 m. Variogram models are summarised in Table 18 and Table 19.

Table 18. Variogram parameters by domain – Fe %									
Zone	Domain / subdomain	Nugget	Maximum Range	Major / Semi- major	Major / Minor				
Northwest	1 HG	20	240	2	8				
Northwest	1 LG	5	350	1.75	11.67				
Central N	3 HG	17	100	1	2.85				
Central N	3 LG	2.5	85	1	2.84				
Central N	4 HG	17	150	1	7.5				
Central N	4 LG	10	120	1	6				
Central S	7 HG	23	130	1	3.25				
Central S	7 LG	10	130	1	3.25				

Table 19. Variogram parameters by domain – Femag %									
Zone	Domain / subdomain	Nugget	Nugget Maximum Range Majo		Major / Minor				
Northwest	1 HG	25	250	2.1	8.3				
Northwest	1 LG	10	350	1.95	11.67				
Central N	3 HG	24	80	1	2.28				
Central N	3 LG	5	150	1	5				
Central N	4 HG	17	150	1	7.5				
Central N	4 LG	8	130	1	6.5				
Central S	7 HG	23	130	1	3.25				
Central S	7 LG	12	130	1	3.25				

14.8 Estimation

Mineralized domains were divided into subdomains above 20% Fe (high grade) and below 20% Fe (low grade) using an indicator kriged into the block model. The indicator cut-off used was 0.4, meaning that there was a 40% probability that the block was high grade. Informing sample composites were then flagged depending on which subdomain they were located within. Fe% and Femag % were then estimated by Ordinary Kriging with anisotropy applied into blocks 15x15x10m in size within each domain-subdomain.

Fe% and Femag% in high grade blocks (blocks of >=40% probability of being >=20% Fe) were estimated using Ordinary Kriging and all the samples within the high grade subdomain, including subgrade samples. Estimation criteria were a minimum of 2 informing samples and a maximum range of between 80 m and 300 m depending on the domains.

Fe% and Femag% in low grade blocks (blocks of <40% probability of being >=20% Fe but still lying within mineralized skarn domains) were estimated using Ordinary Kriging (OK) and all samples within the low grade subdomain, including sub-grade samples, but with un-sampled intervals ignored.

Values for P% and S% were estimated for each domain and high and low grade sub-domains using all available assays. There was not enough Ca data at this time to make a meaningful model.

14.8.1 Ordinary Kriging

Ordinary Kriging ("OK") is a robust grade estimation technique and is the main algorithm used in geostatistics. The most common use of OK is to estimate the average grades into 'panels' at the scale of the available drill hole spacing. OK is a globally unbiased estimator which produces the least error variance for grade estimates.

It uses the grade continuity information from the semi-variogram to estimate grades into panels. It is also able to accommodate anisotropy within the data and is able to replicate this in the panel estimates. Another important feature of Kriging is that it automatically deals with clustering of data which is important in areas where the data density is not uniform.

Due to variable non-stationary issues, OK was used in preference to simple Kriging ("SK") as only local stationarity conditions are required for the OK algorithm.

Kriging forms a sound basis for generating panel grade estimates at a scale which is appropriate to the sample density. If tonnes and grades are required for volumes smaller than the Kriging panel size, then other more advanced non-linear techniques need to be applied.

Grades within the diffusion model show a systematic gradational relationship (Figure 39). This model is appropriate if low grades tend to be adjacent to intermediate grades, which tend to be adjacent to high grades. The transition between high, medium and low grades is generally systematic resulting in edge-effects. The different grade zones are assumed to be correlated in as much as going from low to high grades requires the transitional grades to be medium.

The 'mosaic model', consists of random 'parcels' of mineralization with grades that show no obvious systematic trend (Figure 39). High-grade zones can occur adjacent to waste zones with any combination of adjacent grade zones possible and no obvious correlation between the various 'parcels'. The correlation between adjacent zones is very low. In this case we say that there are no edge-effects.

If the diffusion model best represents the mineralization being examined, a linear estimation method such as Ordinary Kriging or non-linear estimation method such as a Gaussian estimation methodology for recoverable resource estimation (conditional simulation) can be employed.

If the mosaic model best describes the grade continuity, it is assumed that a minimum correlation occurs between the mineralized grade zones within the broad grade envelope and an indicator based estimation methodology is preferred (i.e. Indicator Kriging).

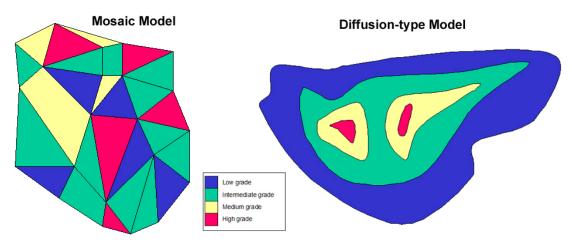


Figure 39: The two end member models of grade correlation with a domain

14.8.2 Block Model and Panel Size

The Block Model extents cover the combined Northwest and Central deposits and the dimensions and parameters for the 3D block model are shown below in Table 20. The combined deposit was defined for estimation using a block model with XYZ dimensions of 15m x 15m x 5m and the final model was later reblocked to 15m x 15m x 10m to reflect the likely dimensions of mining blocks for open pit or underground.

Table 20: Block Model Dimensions								
Type Y X Z								
Minimum Coordinates	80675	93525	-1500					
Maximum Coordinates	84185	96225	260					
User Block Size	15	15	10					
Min. Block Size	15	15	10					
Rotation	0	0	0					

14.8.3 Search parameters

With the exception of domain 1, search ellipses used were isotropic in the orientation of the average dip plane of each domain, with limited cross strike extents. Typically the search ellipse maximum distance was greater than the maximum variogram range, which allowed all blocks in the model to be filled in a single estimation pass. The same search parameters were used for Fe% and Femag% in high grade and low grade subdomains to ensure that all blocks were filled with both variables.

Four (4) search ellipses were defined, one for each domain able to be modelled by variography. The remaining three domains used the same search parameters as adjacent modelled domains. Table 21 summarises the orientations and search distances for major, semi-major and minor axes of the search ellipses used.

	Table 21. Search ellipse orientations and distances									
		Major axis		S	emi-major a	xis	Minor axis			
Domain	Dip	Dip	Distance	Dip	Dip	Distance	Distance			
		direction	(m)		direction	(m)				
1 HG	80	135	338	0	45	95	20			
1 LG	80	135	455	0	45	260	20			
3 HG	65	235	136	0	145	136	18			
3 LG	65	235	170	0	145	170	18			
4 HG	90	070	165	0	340	165	30			
4 LG	90	070	168	0	340	168	30			
7	50	230	208	0	140	208	18			

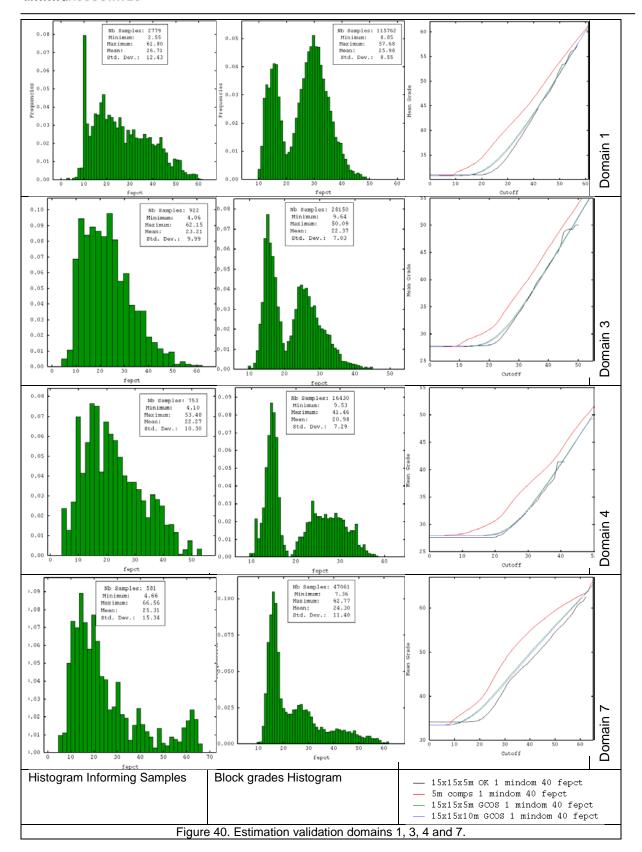
14.8.4 Informing samples

Due to the extensive extrapolation between drill hole and the selective nature of the sample data, only a small number of composites were permitted to inform the blocks. Between a maximum of 24 to a minimum of 2 informing composite samples were allowed. The search radius was not constrained to drill holes, forcing the estimation to select assays from several holes.

14.8.5 Block model attributes

Table 22 displays the attributes created for the Lomonosovskoye block model.

		Ta	ble 22: Block N	Mode	el Attribute	es	
Attribute Name	Туре	Decimals	Background	d	Descrip	otion	
code_rock	Character	-	undf		Rock Type		
					air	Above the topography	
						Default value below the topography,	
					rock	generally undifferentiated volcanics	
					cover	Above top of basement and below topo	
					ore1	Northwest Deposit main	
						Northwest Deposit, HW split at south	
					ore2	end	
						Central Deposit, Northwest corner	
					ore3	"bridge" area	
					ore4	Central Deposit, NE corner	
					ore5	Central Deposit, small area in centre	
						Central Deposit, larger area in the	
					ore6	centre	
					ore7	Central South Deposit	
					skarn	Skarn but not mineralized	
					limest	Limestone	
					tuff	Tuff	
					tuffit	Tuffite	
					sandst	Sandstone	
					silst	Siltstone	
					diorite	Diorite	
					Specific	Gravity - cover=2, rock=2.74, ore =	
density	Real	2		0	2.74+fe	_perc*0.0213	
fe_perc	Real	2		0	Fe grad	e percent	
•					pit shell	number - currently 19 if block centroid is	
inpit	Character	-	no		above pit shell		
mag_perc	Real	2		0	Mag grade percent		
mcaf	Real	2		0	Mining Cost Adj Factor– not currently filled		
pcaf	Real	2		0	Processing Cost Adj Factor– not currently filled		
rescat	Character	-	undefined		measured, indicated, inferred or other		
s_perc	Real	2		0	Sulphur grade percent		
weathering	Character	-	waste			ring Zone – not currently filled	


14.8.6 Block model validation

For each domain, raw informing sample data histograms were compared with estimated block grade histograms (Figure 40). The "spike" in the raw sample histogram at 10% Fe represents introduced 10% Fe values where no samples were present.

The impact of dividing blocks into high grade and low grade subdomains at 20% Fe is emphasised in the block grade histogram, and is more prominent in some domains than others – in Domain 4 it is almost complete. Grades just above cut-off have been pushed up, and those just below pushed down, although the analysis in the third validation panel would indicate that no overall bias was introduced.

The right-hand column in Figure 40 shows a comparison between: 1) average informing sample grade above cut-off (red line); 2) informing sample grade above cut-off after correction for sample volume from 5 m drill composites to 15x15x5m (green line) and; 3) 15x15x10m (blue line) mining blocks and actual estimated block grades (black line). The expected volume variance effect in moving from 5 m drill samples to mining blocks is as expected, but there is little difference between expected values for mining blocks and those estimated by OK. No bias has been introduced, only the expected smoothing effects. The distinctive very-high grade population in domain 7 is also clearly seen.

14.8.7 Bulk density

Density determinations on samples by ALS laboratories results were integrated into the model to give a more accurate reflection of the true density of the blocks containing mineralization. Initially a density of 3.75 t/m³ was used for the Northwest Deposit and 3.65 t/m³ for the Central Deposit, based on density values cited in the TOO Geoservices Resource Report, 2011. Using the current drilling results for over 3000 samples, a linear regression was plotted to test the relationship for the density against Fe% above the 20% cut off grade as shown in Figure 41. An obvious correlation can be seen of increasing density with increased Fe content. The intercept was set at the background density of 2.74 t/m³ for surrounding country rocks.

The regression line equation, density = 0.0213 x iron content + 2.74, was used to populate the ore_density column within the block model for all blocks within mineralized domains. It is this density that has been used to estimate the total tonnes and grades for the resource estimate.

The background density of 2.74 t/m³ was used for all other unweathered rock blocks.

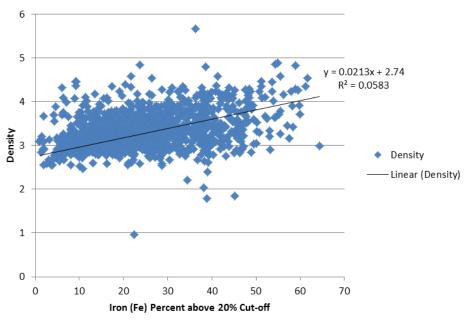


Figure 41: Linear regression plot for Iron (Fe) above 20% cut-off against laboratory recorded density

14.9 Resource classification

Based on the study herein reported, delineated mineralization of the Lomonosovskoye Project is classified as a resource according to the definitions from JORC Code standards:

A 'Mineral Resource' is a concentration or occurrence of material of intrinsic economic interest in or on the Earth's crust in such form, quality and quantity that there are reasonable prospects for eventual economic extraction. The location, quantity, grade, geological characteristics and continuity of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge. Mineral Resources are sub-divided, in order of increasing geological confidence, into Inferred, Indicated and Measured categories. (JORC Code 2004)

A breakdown of the Lomonosovskoye Project resource estimate by resource category is provided in Table 23 and illustrated in Figure 42.

Table 23: Mineral Resource Estimate for Combined Lomonosovskoye, Effective Date of April 17, 2014, Cut-off 20% Fe									
Class Mt Fe % P % S % FeM %									
Measured	63.9	30.5	0.29	3.01	21.3				
Indicated	414.2	30.6	0.22	3.3	21.04				
Measured & Indicated	478.1	30.5	0.23	3.3	21.1				
Inferred	28.4	28.0	0.28	3.04	16.71				

For the classification of Mineral Resources for the Lomonosovskoye Project, the following definitions were adopted and applied to each domain separately:

- Inferred resource category within domain wireframes and with at least 2 informing samples.
- Indicated resource category within domain wireframes and the maximum of 24 informing samples and Krig Slope greater than 0.1.
- Measured resource category within domain wireframes and the maximum of 24 informing samples and a Krig Slope > 0.5.

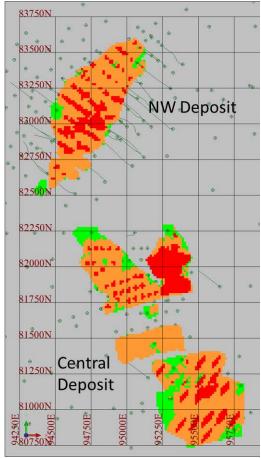


Figure 42: Project Overview, plan view showing drill traces, resource blocks by category (Measured (red), Indicated (orange) and Inferred (green) and domains.

14.10 Resource summary

From the data received as of November 2012, the resource estimate for Lomonosovskoye, effective date of April 17, 2014, stands as outlined below, above a cut-off grade of 20% iron (Table 24):

Table 24: Mineral Resource Estimate for Combined Lomonosovskoye,						
Effective Date of April 17, 2014, Cut-off 20% Fe						
Class	Mt	Fe %	Р%	S %	FeM %	
Measured	63.9	30.5	0.29	3.01	21.3	
Indicated	414.2	30.6	0.22	3.3	21.04	
Measured & Indicated	478.1	30.5	0.23	3.3	21.1	
Inferred	28.4	28.0	0.28	3.04	16.71	

Notes to the Lomonosovskoye Mineral Resource Estimate need to read in conjunction with the table above:

- The current resource estimate is based on holes drilled and assays received up to 23 November 2012;
- 2. The magnetic anomaly contours and historical geological cross sections were used to constrain and extend the resource estimation domains up to 50 m beyond last drill hole, where reasonable;
- 3. Three dimensional wireframes were constructed for each domain guided by 5 m bench composites, down hole magnetic susceptibility data, newly translated lithology logs and magnetic and gravity maps. Interpretations at a 10% Fe cut-off grade were made for the Northwest Central deposits;
- 4. Assay results were composited to 5 meter intervals down-hole within domains;
- 5. Fe assay results were capped with at the 99.5 percentile for the Northwest Deposit and 99.9 percentile for the Central deposit;
- 6. No capping was required for the magnetite content;
- 7. Block Model extents cover the combined Northwest and Central deposits, with a block size of 15mN x 15mE x 10mRL, without sub-blocking to reflect block open-pit or underground;
- 8. An Indicator approach was used to select blocks with a greater than 40% probability of being above a cut-off grades of 20% Fe within domains;
- 9. Grade was interpolated into a constrained block model using all 5 m sample composites within above or below 20% Fe blocks, including samples with a value below or above 20% Fe respectively. This is considered to represent the true "mining block" grade, including both internal and edge dilution. Ordinary Kriging estimation technique with anisotropy was applied;
- 10. Maximum search was varied by domain, from 150 to 300 m with 3 to 24 informing samples;
- 11. Density was calculated using the formula: density = 0.0213 x Fe content + 2.74 taken from the linear regression plot for density against Fe content for over 3000 samples;
- 12. Resources are reported above 20% Fe for both Deposits;
- 13. Inferred resource category within domain wireframes and with at least 3 informing samples.
- 14. Indicated resource category within domain wireframes and the maximum of 24 informing samples and Krig Slope greater than 0.1.
- 15. Measured resource category within domain wireframes and the maximum of 24 informing samples and a Krig Slope greater than 0.5.

14.10.1 Dilution and mining blocks

All 5 m sample composites within high grade blocks were selected, including samples with a value below 20% Fe. This is considered to represent the true "mining block" grade, including both internal and edge dilution. For each of the domains, the degree this dilution effects on the raw sample grades is shown in Table 25. Excluding domains 2, 5 and 6 (too few samples), below cut-off samples are from 18 to 23% of the total with an average of 19% and result in a drop in grade of about 3.6% Fe. The grade of this dilution averages 14.7% Fe. Note that this is based on raw informing data, not the Krig estimated block grades.

Table 25: Informing sample statistics, high and low grade sub-domains									
		Dom1	Dom2	Dom3	Dom4	Dom5	Dom6	Dom7	Total
below 20	count	355	17	134	85	1	6	74	672
	average	15.01	12.05	14.47	14.72	17.47	14.35	14.04	14.68
	% of total	18%	28%	22%	20%	25%	8%	23%	19%
above 20	count	1645	43	484	339	3	69	247	2830
	average	34.58	32.66	30.61	30.60	26.55	29.37	37.69	33.53
	% of total	82%	72%	78%	80%	75%	92%	77%	81%
total	count	2004	60	618	424	4	75	321	3506
	average	31.08	26.82	27.11	27.42	24.28	28.17	32.24	29.90
	Drop in grade	-3.50	-5.84	-3.50	-3.18	-2.27	-1.20	-5.45	-3.63

14.11 Comparison with previous resource estimate

The previously published resource estimate for Lomonosovskoye effective December 2012 is shown in Table 26 above a cut-off grade of 20% Fe.

Table 26: Mineral Resource E	stimate for Combined Lo	omonosovsko	oye Decem	nber 2012,	cut-off 20%
Class	M Tonnes	Fe %	P %	S %	FeM %
Measured	7.6	29.8	0.5	3.3	19.7
Indicated	325.9	36.76	0.2	3.5	27.8
Measured & Indicated	333.5	36.6	0.2	3.5	27.6
Inferred	108.7	34.8	0.3	4.5	25.9

It is MA's opinion that the mineral resource estimates (Table 26) included in the December 2012 report have been largely verified by the new estimates (Table 24), with changes in tonnage and grade reflecting increased confidence and the use of an estimation methodology better suited to bulk surface and underground mining. New estimates are fully diluted for internal and edge mining dilution.

The new estimate represents an increase in tonnage of 45% and an increase in contained iron of 25% in the measured and indicated mineral resource categories over the estimates included in the December 2012 report. The changes from the estimates in the December 2012 report relate to increased confidence levels, as well as changes in the estimation methodology. As a result of new assay information from old drill core holes samples and the use of the down-hole geophysical data to better define low-grade areas, the inclusion of mining dilution has increased tonnage without a corresponding loss of contained metal at an unchanged cut-off grade of 20% Fe. The overall effect has been to lower the average grade of estimated mineral resources.

15 MINERAL RESERVE ESTIMATES

This section is not applicable for this NI43-101 Report as there is no current NI43-101 compliant mineral resource estimate defined for the basis of a scoping study which would allow mineral resource conversion to reserves. Ongoing work relevant to this section is detailed in section 26.1 Work program and budget.

16 MINING METHODS

This section is not applicable for this NI43-101 Report. Ongoing work relevant to this section is detailed in section 26.1 Work program and budget.

17 RECOVERY METHODS

This section is not applicable for this NI43-101 Report. Ongoing work relevant to this section is detailed in section 26.1 Work program and budget.

18 PROJECT INFRASTRUCTURE

This section is not applicable for this NI43-101 Report. Ongoing work relevant to this section is detailed in section 26.1 Work program and budget.

19 MARKET STUDIES AND CONTRACTS

This section is not applicable for this NI43-101 Report. Ongoing work relevant to this section is detailed in section 26.1 Work program and budget.

20 ENVIRONMENTAL STUDIES, PERMITTING AND SOCIAL OR COMMUNITY IMPACT

This section is not applicable for this NI43-101 Report. Ongoing work relevant to this section is detailed in section 26.1 Work program and budget.

21 CAPITAL AND OPERATING COSTS

This section is not applicable for this NI43-101 Report. Ongoing work relevant to this section is detailed in section 26.1 Work program and budget.

22 ECONOMIC ANALYSIS

This section is not applicable for this NI43-101 Report. Ongoing work relevant to this section is detailed in section 26.1 Work program and budget.

23 ADJACENT PROPERTIES

The Sarbaisky and Sokolovsky iron ore open pit mines lie 10 km east, and the Kacharsky Open pit mine is 35 km north of the Lomonosovskoye Project area respectively (Figure 43). The geology and magnetite mineralization of these deposits is considered similar to that of the Lomonosovskoye Project. MA has not been able to verify that the mineralization described for the regional deposits of Sarbaisky, Sokolovsky and Kacharsky and notes that the descriptions of the iron ore mineralization at these deposits is not necessarily indicative of the same on the Lomonosovskoye Project.

Figure 43: Adjacent Properties: Sarbaisky-Sokolosky and Kacharsky iron ore mines (Source: Google Maps 2011)

ENRC operates the 3 deposits listed above. The adjoining mining operation is registered to SSGPO. SSGPO is a vertically integrated business producing iron ore concentrate and pellets. The operations are centred on the town of Rudniy which was established to support the iron ore operations. The centralised facilities are located near Rudniy whilst the mines are located between 5 and 50 kilometres from the town. In April 2007, ENRC entered into a long-term contract with Magnitogorsk Iron & Steel Works OJSC, a leading Russian steel producer, that extends until 2016 (ENRC 2008).

The following descriptions are taken from the ENRC 2007 prospectus.

The principal mining assets of SSGPO are:

- Sokolovsky Underground Mine. The Sokolovsky deposit is located five kilometres north of Rudniy. This business unit is responsible for mining the iron ore deposits that are scheduled to be mined using underground methods. These comprise under pit resources of the Southern and Central areas and the Northern and Epicentre 6 production areas. In 2006, 1.56 Mt of iron ore was mined at a grade of 30.8% Fe using sub-level caving techniques.
- Sokolovsky-Sarbaisky Open Pit Mines. The Sarbaisky and Sokolovsky groups of deposits are
 located within five kilometres of each other. This business unit is responsible for the open pit
 operations at both Sarbaisky and Sokolovsky. In 2006, 9.8 Mt at 27.1% Fe was mined from
 Sokolovsky open pit and 9.9 Mt at 38.3% Fe from Sarbaisky open pit. The ore and waste are
 drilled, blasted and loaded into either railway trucks or off-highway trucks. Ore is transported to
 the central processing facilities by rail.

Figure 44: Lomonosovskoye Project Location relative to Sarbaisky Open Pit (Source: Google Maps 2011)

• Kacharsky Open Pit Mine. This open pit is located 50 kilometres north of Rudniy. In 2006, 15.3 Mt was mined at 32.2% Fe. The ore is railed to the central processing facility in Rudniy. The iron ore deposit was covered by a very thick layer of recent sediments, up to 200 metres thick. The pit was 343 metres deep as of 2008 and was planned to be 700 metres deep by the end of the mine's life. One cut-back was planned. The ore and waste are drilled and blasted and then loaded into either railway trucks or off-highway trucks. An in-pit crushing and conveying system is planned to enhance material handling for mining from the deeper level.

Photo 11: SSGPO Sokolovsky Open Pit operation, facing north (Source: MA 2011)

Photo 12: SSGPO Sokolovsky Open Pit operation (Source: MA 2011)

23.1 Geology and resources of adjacent ENRC deposits

The following descriptions are summaries in most part from the ENRC prospectus (2007).

ENRC describes the mineralization of its Sokolovsk- Sarbaskyi deposits as being hosted in Carboniferous carbonate sediments and extrusive volcanic rocks, underlain by porphyritic granitoid intrusions. ENRC considers that the economic mineralization is a result of highly iron-enriched, hot metasomatising fluids passing through the limestone and tuffaceous volcanics, along pre-existing faults and weak zones in the generally porous volcanic rocks, as a result of the intrusion of the granitoids.

All of the ENRC deposits are covered by sedimentary waste rocks with thicknesses varying from around 100 metres at Sarbaisky and Sokolovsky to up to 200 metres at Kacharsky. The mineralization host rocks are folded into large, generally open, fold structures. Both the Paleozoic rocks and the granitoids are affected by faulting. In some areas, the Palaeozoic sequences show evidence of weathering, and some collapse structures, and oxidation of the magnetite to martite and hematite.

The Sarbaisky and Sokolovsky deposits are situated on opposite limbs of an anticlinal structure, with a porphyritic granite intrusion between the remnant limbs of the partially eroded feature. The dip of the strata ranges from around 45 degrees to vertical or slightly overturned.

ERNC note that while there are local variations in all the deposits, they have similar genesis, and as a result can be described with certain general characteristics. The mineralization occurs as massive, banded, disseminated, and stockwork vein types in various portions of the deposits. The major iron bearing minerals are magnetite, pyrite, pyrrhotite, and, less commonly, markasite. Titanomagnetite occurs only in specific parts of the deposits.

The magnetite content of the massive mineralization ranges from 60 to 80%, from 20 to 60% in the banded mineralization, and from 20 to 55% in the disseminated and stockwork vein mineralization types. The pyrite content of the mineralization varies between 0.1 and 15%. Concentrations of pyrite are generally highest at Sokolovsky. Hypogene alteration together with calcite forms veins of up to 0.5 metres wide.

23.1.1 Kacharsky

ENRC reported the following JORC compliant reserves and resources for the Kacharsky deposit in July 2007 (Table 27):

Table 27: Kacharsky - Ore Reserves and Mineral Resources -1 July 2007				
Ore Reserve Category	(Mt Dry)	(% Fe)	(Mt Fe)	
Proved	187.7	42.5	79.6	
Probable	676.7	35.6	241.0	
Total Proved & Probable	864.4	37.1	320.6	
Mineral Resource Category	(Mt Dry)	(% Fe)	(Mt Fe)	
Mineral Resource Category Measured	(Mt Dry) 204.6	(% Fe) 44.5	(Mt Fe) 91.0	
	\ ,			
Measured	204.6	44.5	91.0	

(Source: ENRC 2007)

MA has not been able to verify that the mineralization described for Kacharsky and notes that the descriptions of the iron ore mineralization at Kacharsky is not necessarily indicative of the same on the Lomonosovskoye Project

Kacharsky was the largest deposit in the Turgai belt (Figure 19) but has been over taken in size by Sokolovsky. It is hosted by the Valerianovo supergroup. Mineralization is largely hosted by altered limestone lenses and beds, enclosed within porphyritic basalts and andesites and associated intermediate tuffs.

At Kacharsky, the host rocks have been extensively folded with fold axes along azimuths of between 10 and 50 degrees. The limbs of the folds dip at angles varying between 15 and 70 degrees. The wavelength of the folds range from 2 to 4 km, but are interrupted by extensive faulting of various directions and magnitude with displacements up to 300 metres. Three main areas of mineralization have been outlined at the deposit. These zones comprise a total length of 4.5 kilometres along strike, between 50 and 2,000 metres down dip, and between 7 and 170 metres in width. Forty distinct mineralized bodies have been defined in the Mineral Resources, with the higher grade of them being massive and stockwork vein types

MA has not been able to verify that the mineralization described for Kacharsky and notes that the descriptions of the iron mineralization at Kacharsky is not necessarily indicative of the same on the Lomonosovskoye Project.

23.1.2 Sokolovsky

ENRC reported the following JORC compliant reserves and resources for Sokolovsky deposit in July 2007 (Table 28):

Table 28: Sokolovsky - Ore Reserves and Mineral Resources -1 July 2007				
Ore Reserve	Category	(Mt Dry)	(% Fe)	(Mt Fe)
Proved	Underground	16.9	39.0	6.6
Probable	Underground	231.4	31.3	72.5
	Open Pit	36.1	33.5	12.1
Total Proba	ble	267.5	31.6	84.6
Total Prove	ed & Probable	284.4	36.7	91.2
Mineral Re	Mineral Resource Category		(% Fe)	(Mt Fe)
Measured	Underground	85	48.5	41.2
Indicated	Underground	1,099.9	38.8	427.2
	Open Pit	35.6	34.5	12.3
Total Indica	ited	1,135.5	38.7	439.5
Total Meas	ured & Indicated	3,646.5	38.9	480.7
Inferred	Underground	275.6	42.3	116.7
	Open Pit	11.1	26.6	3.0
Total Inferi	ed	286.7	41.7	119.7
(O ENI	20.0007)			

(Source: ENRC 2007)

MA has not been able to verify that the mineralization described for Sokolovsky and notes that the descriptions of the iron mineralization at Sokolovsky

is not necessarily indicative of the same on the Lomonosovskoye Project

The mineralization at Sokolovsky is in stacked magnetite lenses distributed over a strike length of 5.6 km (Figure 18 & Figure 19). Sokolovsk is located on the eastern limb of a NNE-trending anticline that hosts the Sarbai deposit on its western limb. As with Kacharsky, the deposit is hosted by carbonates with lesser intercalated tuffaceous sediments, and by intermediate volcanics, in the middle unit of the Valerianovo supergroup. Unlike Kacharsky, the host sequence is intruded by the northeast elongated, 15 by 3.5 km Sarbai-Sokolovsk gabbro-diorite-granodiorite suite, which is bounded by a series of NNE-trending faults.

At Sokolovsky, mineralization has been traced for approximately 7.5 kilometres along its length, with widths varying from 180 to 650 metres. The Lower Carboniferous rocks were reworked during the middle and upper Carboniferous period, and this resulted in subsidence of the original rock mass creating conglomerates and breccias consisting of the original limestone and volcanic rocks with the resultant cavities filled with clay material. This has not affected the mineralization of the mining operations.

MA has not been able to verify that the mineralization described for Sokolovsky and notes that the descriptions of the iron mineralization at Sokolovsky is not necessarily indicative of the same on the Lomonosovskoye Project.

23.1.3 Sarbaisky

ENRC reported the following JORC compliant reserves and resources for the Sarbaisky deposit in July 2007 (Table 29):

Table 29: Sarbaisky - Ore Reserves and Mineral Resources -1 July 2007				
Ore Reserve Category	(Mt Dry)	(% Fe)	(Mt Fe)	
Proved	42.2	38.9	16.4	
Probable	78.9	33.8	26.7	
Total Proved & Probable	121.1	35.58	43.1	
Mineral Resource Category	(Mt Dry)	(% Fe)	(Mt Fe)	
Measured	56.8	37.9	21.5	
Indicated	805.4	37.4	301.0	
Total Measured & Indicated	862.2	37.43	322.5	
Inferred	157.9	38.8	61.3	

(Source: ENRC 2007)

MA has not been able to verify that the mineralization described for Sarbaisky and notes that the descriptions of the iron mineralization at Sarbaisky is not necessarily indicative of the same on the Lomonosovskoye Project

The Sarbaisky deposit (Figure 18, Figure 19, Figure 45) lies on the western limb of the anticline. The geological setting is similar to Sokolovsky. The SSGPO complex is located between the two deposits.

At Sarbaisky, three mineralization zones have been identified that are present in a complex of contact metasomatic formations, consisting of magnetite mineralization and barren skarns and hornfels. The zones are continuous along strike and dip, except where they are disrupted by faults and diorite intrusions. The eastern and western mineralized bodies are larger, similar in size at 1,700 metres and 1,900 metres strike length respectively, and 180 metres wide. Both orebodies have also been intersected at depths of over 800 metres. The smaller southeastern mineralized body is approximately 100 metres long, 170 metres wide, and has been drilled to depths of just less than 800 metres. Exploration in the 1980's has outlined a region of stockwork vein type mineralization, close to surface near the southern boundary of the current open pit.

MA has not been able to verify that the mineralization described for Sarbaisky and notes that the descriptions of the iron mineralization at Sarbaisky is not necessarily indicative of the same on the Lomonosovskoye Project.

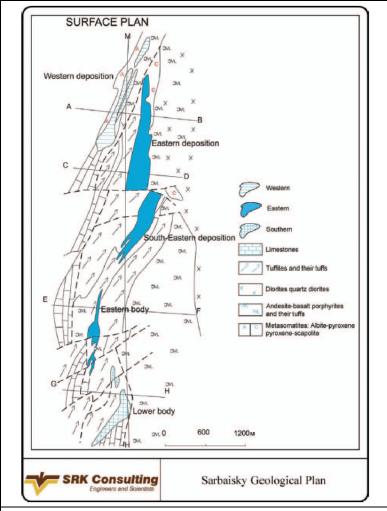


Figure 45: Sarbaisky (Sarbai) – Simplified Geology and Cross sections (Source: ERNC 2007)

23.2 Production from adjacent ENRC deposits

Table 30 lists the published production data from the adjacent mines (ENRC 2007).

Table 30: Production Statistics for the adjacent SSGPO Mining Operations					
		Historical			
	2004 2005 2006 H1 200			H1 2007	
Mining					
Underground mining	(Mt)	3.1	2.0	1.6	1.2
Open pit mining	(Mt)	32.7	28.6	37.2	18.3
Total Mined*	(Mt)	35.8	30.7	38.8	19.5
Processing					
Concentrate Produced	(Mt)	15.4	12.9	16.1	8.3
Sales ⁽⁴⁾					
Concentrate sold	(Mt)	5.2	4.7	7.0	3.6
Pellets sold	(Mt)	9.4	7.2	9.0	4.3
(Source: ENRC 2007)					

The above statistics have been used to produce the results listed in Table 31 which indicates the weight recovery of concentrate at SSGPO is in the range 41.5% to 43%.

Table 31: Weight recovery of concentrate for the adjacent SSGPO Mining Operations					
Year 2004 2005 2006				H1 2007	
Total Mined Mt	35.8	30.7	38.8	19.5	
Concentrate Produced Mt	15.4	12.9	16.1	8.3	
Weight Recovery	43.02%	42.02%	41.49%	42.56%	

This weight recovery is similar to most skarn type magnetite deposits including the Savage River deposit in Tasmania and the Grange Resource's Southdown Project in Western Australia.

24 OTHER RELEVANT DATA AND INFORMATION

In September 2013 KMI engaged Wardell Armstrong International as lead technical consultant to coordinate a Definitive Feasibility Study (DFS) on the Project. The DFS is expected to be completed by the end of 2014. Wardell Armstrong International is an independent mining consultancy providing specialized geological, geotechnical and hydrogeological mining advice as well as bringing environmental and social experience to mining projects worldwide across all commodities. The full scope of work for the DFS includes:

- review of the geological data and preparation of an updated resource model;
- technical support to all site investigation works including geological, hydrogeological, and geotechnical drilling;
- geotechnical analysis and design for the open pit slopes and waste dump;
- hydrogeological and site water balance modelling;
- design of the tailings storage facility;
- ESIA management and social impact assessment;
- mine closure and rehabilitation planning;
- ore reserves, life of mine plan, mining method and optimisation;
- metallurgical testwork and process and plant design;
- · project infrastructure planning;
- CAPEX/OPEX costing development and benchmarking;
- · project financial modelling, analysis and market studies; and
- preparation of the DFS document.

25 INTERPRETATION AND CONCLUSIONS

25.1 Interpretation

The Lomonosovskoye Project contains significant magnetite iron mineralization in two deposits comprised of seven adjacent domains which have similar geological settings to the nearby operating magnetite iron ore open pit and underground mines in the Rudniy region.

Historical work to date has outlined skarn iron mineralization at the Northwest Deposit and the Central Deposit beneath 100 m of overburden and extending to 1600 m depth in the Northwest Deposit, and some 900 m at Central.

The drilling available consisting of twenty two (22) drill holes totalling 9,049 m has allowed for confirmation of the historical drilling and for the deposit to be better understood and extended in area leading to this resource estimate but still remains open at depth and in the poorly drilled and structurally complex region between the Northwest and Central deposits.

From the data received as of November 2012, the resource estimate for Lomonosovskoye effective date of April 17, 2014 stands as outlined below, above a cut-off grade of 20% iron:

Table 32: Mineral Resource Estimate for Combined Lomonosovskoye, Effective Date of April 17,					
2014, Cut-off 20% Fe					
Class	Mt	Fe %	Р%	S %	FeM %
Measured	63.9	30.5	0.29	3.01	21.3
Indicated	414.2	30.6	0.22	3.3	21.04
Measured & Indicated	478.1	30.5	0.23	3.3	21.1
Inferred	28.4	28.0	0.28	3.04	16.71

The revised estimate is based on the data set used in the December 2012 report, with additional assaying of stored samples and interpretation of down-hole geophysical logs. It is expected that drilling completed in 2013 and 2014 will be included in the next update.

It is MA's opinion that the mineral resource estimates included in the December 2012 report have been largely verified by the new estimates, with the changes in tonnage and grade reflecting increased confidence and the use of an estimation methodology better suited to bulk surface and underground mining. The new estimates are fully diluted for internal and edge mining dilution.

The mineralization domains were redefined by 3D wireframes using drill assay data, detailed geology logs and down-hole magnetic susceptibility logs. The deposit was divided into blocks above and below 20% Fe using an indicator approach. Grades and mineralization percentages were then estimated by Ordinary Kriging into blocks 15x15x10 m in size within each domain.

While there have been a number of metallurgical programs through the history of the project, further metallurgical testing will be required regardless of the historical metallurgical results. MA notes the presence of significant hematite as well as magnetite at several locations and this will need to be taken into account in the plant design. A metallurgical program is currently being undertaken by KMI with results expected in 2014.

MA notes that the Lomonosovskoye Project has a favourable location due to its proximity to transportation routes, and sources of water, gas, and power supply, which have been established with the regional mining complex based in Rudniy. This may allow a reduction in capital expenditure and may reduce the cost of production if the project proceeds to development through the use of shared infrastructure.

The Legal Opinion states that there is a remote risk of the Competent Authority will not approve the transfer of Subsoil Use Contract rights. MA believes the revised ownership structure has largely offset this risk.

In terms of to the project's potential economic viability, as the Project is considered to be in Advanced Exploration stage prior to Preliminary Economic Assessment, it is not at a stage to discuss risk in

terms of potential economic viability. There are however reasonable prospects of eventual economic extraction by combined open pit and underground methods.

25.2 Conclusions

The QP makes the following observations and conclusions regarding the Lomonosovskoye Project:

- Significant skarn type iron mineralization exists at the Lomonosovskoye Project.
- The mineralization occurs in 3 main types disseminated, veins and massive.
- The deposit remains open at depth and along the lateral extents in certain areas as well as being under-drilled in the mid portion between the Northwest and Central deposits. This area is currently being tested with diamond drilling.
- The resource estimates will be updated based on the results of the drilling program currently underway.
- Following a more rigorous and reliable testing of density, a calculated density has been applied to iron bearing blocks within the block model rather than fixed values as in the past.
- The Lomonosovskoye Project has a very favorable location due to its proximity to transportation routes and infrastructure.
- The historical drill-holes have been validated by a current drilling program and close examination of the statistics between old and current drilling has deemed that the historical holes are suitable to be included in this resource estimate.
- The techniques applied in the sampling, logging and storing of core are deemed appropriate QA/QC procedures and standards.
- The mineralization remains open at depth and along the lateral extents in certain areas as well as being under-drilled in the mid portion between the Northwest and Central deposits.
- Selective sampling within mineralized zones has required a weighting factor to be applied to the estimation model; future drilling should be fully sampled within the interpreted mineralized zone to fill in these gaps and allow estimation of the waste as well as mineralization.

26 RECOMMENDATIONS

MA recommends the following activities be conducted to improve the accuracy of future mineral resource estimates and thus reserves, mine design and production schedules:

- Review paleo-weathering depth profile and effects at the top of mineralization, particularly on magnetite. This may be achieved by close spaced micro-seismic or georadar;
- Validation drilling to include more twinned holes to allow direct comparison with historical holes. Twin hole selection should pick historical holes which have reliably stored core;
- Evaluate historical holes which display no assay results and determine whether assays are available and missing or whether resampling can be carried out to further enhance the model.
- Further infill drilling is required in areas that are poorly sampled or under drilled in order to close out the deposit and improve the weighting of samples within the model.;
- To gain further confidence in the interpretation and improve the volume of the measured category for the first few years of planned production, the line spacing of 100 m should be closed to 50 m.;
- Drilling should also be focused on those areas that are likely to provide the limits to mine
 design, e.g. where the mineralization envelope cuts the walls of the potential pit.
- Develop and implement rigorous QAQC procedures for all new drilling including down hole geophysics.
- Investigate benefit of 3D geophysical inversion modeling of ground magnetic data to ensure resources are fully closed off and target other mineralization.

26.1 Work program and budget

KMI has developed a US\$13M work program for 2014. The work program consists of ongoing drilling, technical studies, a Definitive Feasibility Study (DFS) and commencement of construction on the Project.

The 2013-2014 drilling program is designed for the purpose of geotechnical, hydrology and resource definition and comprises 68 boreholes totalling approximately 15,600 m. Of the proposed 68 boreholes, 29 are exploration boreholes measuring approximately 11,200 m, 28 are geotechnical boreholes measuring approximately 3,400 m, and 11 are hydrogeological boreholes measuring approximately 1,000 m.

The DFS is being coordinated by Wardell Armstrong International as lead technical consultant and is expected to be completed by the end of 2014. Wardell Armstrong International is an independent mining consultancy providing specialized geological, geotechnical and hydrogeological mining advice as well as bringing environmental and social experience to mining projects worldwide across all commodities. The full scope of work for the DFS includes:

- review of the geological data and preparation of an updated resource model;
- technical support to all site investigation works including geological, hydrogeological, and geotechnical drilling;
- geotechnical analysis and design for the open pit slopes and waste dump;
- hydrogeological and site water balance modelling;
- design of the tailings storage facility:
- ESIA management and social impact assessment;
- mine closure and rehabilitation planning;
- ore reserves, life of mine plan, mining method and optimisation;
- metallurgical testwork and process and plant design;
- project infrastructure planning;
- CAPEX/OPEX costing development and benchmarking;
- · project financial modelling, analysis and market studies; and

• preparation of the DFS document.

Table 33. 2014 Budget		
Description of works		
Drilling work (Drilling works 2013 budget: \$1.77M)	712.2	
Geophysical survey	278.9	
Hydrogeological works	175.78	
Samples preparation	74.7	
Topographical linkage of wells	0.8	
Laboratory works	750.1	
Feasibility study of Industrial condition	192.5	
Preparation of Mining Plan and Feasibility study (inter standards),	1,689.6	
Supervision of exploration programme	241.4	
Preparation and Independent expertise of Project Documents	390.0	
Construction works	5,097.4	
Indirect costs	3,185.0	
Taxes and assignments	462.9	
Total cost of works	13,251.0	

MA considers the budget reasonable for the work planned and sufficient to achieve the planned objectives.

Respectfully submitted, Andrew James Vigar BAppSc Geo, FAusIMM, MSEG Qualified Person

Hong Kong

Effective Date: 17 April 2014 Submitted Date 29 May 2014

27 REFERENCES

- Berzin R., Oncken O., Knapp J.H., Perez-Estaun A., Hismatulin T., Yunusov N. & Lipilin A., 1996. Orogenic Evolution of the Ural Mountains: Results from an Integrated Seismic Experiment. Science, Vol. 274, pp. 220-221.
- Boland M.B., Kelly J.G. & Schaffalitzky C., 2003. *The Shaimerden Supergene Zinc Deposit, Kazakhstan: A Preliminary Examination*. Economic Geology Vol 98 pp787-795.
- Echtler H.P., Stiller M., Steinhoff F., Krawczyk C., Suleimanov A., Spiridonov V., Knapp J.H., Menshikov Y., Alvarez-Marron J. & Yunusov N., 1996. *Preserved Collisional Crustal Structure of the Southern Urals Revealed by Vibroseis Profiling*. Science, Vol. 274, pp. 224-226.
- Eurasian Natural Resources Corporation PLC, 2007 Annex A, *An Independent Mineral Experts'*Report on the Mining, Processing and Power Assets of Eurasian Natural Resources
 Corporation PLC, Prepared by SRK Consulting (UK) Limited; 7 December 2007, in Eurasian
 Natural Resources Corporation PLC Admission to the Official List and to trading on the
 London Stock Exchange Joint Bookrunners: Prospectus, 2007
- Foldenauer, C. J., Mainville, A. G., 2009, "Inkai Operation, South Kazakhstan Oblast, Republic of Kazakhstan", National Instrument 43-101, Cameco, 31 Dec 2009
- Daumov, A., 2012, Legal Opinion in respect of Subsoil Use Contract of Lomonosovskoye LLP.
 Unpublished letter from GRATA Law Firm LLP to TSX Venture Exchange, KMI Capital Inc. and Maitland & Company, 27 January 2012.
- Dudina N.S., 1985, *Prospecting evaluation work in the area of Lomonosovskoye Ore Deposit, Kostanay Region for the period of 1981-1984*, Unpublished Summary Notes.
- Groves D.I., Bierlein F.P, Meinert L.D. & Hitzman M.W., 2010. *Iron Oxide Copper Gold (IOCG)*Deposits Through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from other Epigenetic Iron Oxide Deposits. Economic Geology, Vol. 105, pp 641-654.
- Hawkins T., Herrington R., Smith M., Maslenikov V. & Boyce A., 2010. *The Iron Skarns of the Turgai Belt, North-western Kazakhstan. In Porter T.M.*, (ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, vol. 4 Advances in the Understanding of IOCG Deposits; PGC Publishing, Adelaide, pp. 461-474.
- Herrington R., Smith M., Maslenikov V. Belogub E. & Armstrong R., 2002. A Short Review of Palaeozoic Hydrothermal Magnetite Iron-oxide Deposits of the South and Central Urals and their Geological Setting. In Porter T.M. (ed.), Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective, Vol 2, PGC Publishing, Adelaide, pp343-353.
- Herrington R., Zaykov V.V., Maslenikov V.V., Brown D. & Puchkov V., 2005. *Mineral Deposits of the Urals and Links to Geodynamic Evolution*. Economic Geology 100th Anniversary Volume, pp 1060-1095.
- IMC Montan, 2010, Investment Analysis and Exploration Study on the Mine Construction Project at Lomonosovskoye Iron Ore Deposit, Kostanay Region, Republic of Kazakhstan, dated July 2010, prepared for LLP "Lomonosovskoye" by IMC Montan.
- Juhlin C., Knapp J.H., Kashubin S. & Bliznetsov M., 1996. *Crustal Evolution of the Middle Urals Based on Seismic Reflection and Refraction Data*. Tectonophysics vol. 264, pp 21-34.
- Knapp J.H., Diaconescu C.C., Bader M.A., Sokolov V.B., Kashubin S.N. & Rybalka A.V., 1998. Seismic Reflection Fabrics of Continental Collision and Post-orogenic Extension in the Middle Urals, Central Russia. Tectonophysics Vol 288, pp 115-126.
- Koenig, R., Vigar, A, 2011, Valuation of the Lomonosovskoye Iron Ore Project, Kostanay Region, Republic of Kazakhstan, dated 1 December 2011, prepared for Stonehouse Construction Pte Ltd.
- Matte P,. 2006. *The Southern Urals: deep subduction, soft collision and weak erosion*. Geological Society, London, Memoirs 2006, v. 32, p. 421-426.
- Meinert L.D., Dipple G.M. & Nicolescu S., 2005. World Skarn Deposits. Economic Geology 100th Anniversary Volume, pp 299-336.
- KMI Capital Inc., 2011, TSX Venture Exchange Form 5C Transaction Summary Form, 19 Dec 2011.

- Perez-Estaun A. & Brown D., undated. Uralides: A Key to Understanding Collisional Orogeny.
- Pollard P.J., 2000. Evidence of a Magmatic Fluid and Metal Source for Fe-Oxide Cu-Au Mineralization. In Porter T.M. (ed), Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, Vol. 1, PGC Publishing Adelaide, pp 27-41.
- Porter T.M., 2000. Hydrothermal Iron Oxide Copper-Gold and Related Deposits. In Porter T.M. (ed), Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, Vol. 1, PGC Publishing Adelaide, pp 3-5.
- Porter T.M., 2010 a. *Current Understanding of Iron Oxide Associated-Alkali Altered Mineralized Systems: Part 1, An Overview*; in Porter T.M. (ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, vol 3 Advances in the Understanding of IOCG Deposits, PGC Publishing, pp 5-32.
- Porter T.M., 2010 b. *Current Understanding of Iron Oxide Associated-Alkali Altered Mineralized Systems: Part 2, A Review*; in Porter T.M. (ed.), Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective, vol 3 Advances in the Understanding of IOCG Deposits, PGC Publishing, pp 33-106.
- Williams P.J., Barton M.D., Johnson D.A., Fontbote L., De Haller A., Mark G., Oliver N.H. & Marschik R., 2005. *Iron Oxide Copper-Gold Deposits: Geology, Space-Time Distribution, and Possible Modes of Origin*. Economic Geology, 100th Anniversary Volume, pp 371-405.

28 DATE AND SIGNATURE PAGE

This report titled "Independent Technical Report on the Lomonosovskoye Iron Project, Republic of Kazakhstan" and dated effective 17 April 2014, was prepared and signed by the following authors:

Dated at Hong Kong 29 May 2014

Andrew James Vigar

BAppSc Geo, FAusIMM, MSEG

Qualified Person

29 CERTIFICATES OF QUALIFIED PERSONS

CERTIFICATE ANDREW J VIGAR

I, Andrew James Vigar hereby certify that:

I am an independent Consulting Geologist and Professional Geoscientist residing at 97 Isaac Street, Spring Hill, Queensland 4000, Australia with my office at Level 4, 67 St Paul's Terrace, Brisbane, Queensland 4001, Australia (Telephone +61-7-38319154).

I graduated from the Queensland University of Technology, Brisbane, Australia in 1978 with a Bachelor Degree in Applied Science in the field of Geology. I have continuously practised my profession as a Geologist for the past 32 years since graduation, in the fields of mineral exploration, mine geology and mineral resource estimation. I have held senior positions with Emperor Gold, Western Mining Corporation, Costain Australia and Conzinc Riotinto of Australia Ltd ("CRA") (now Rio Tinto Limited) prior to commencing full-time consulting in 1996. I have been involved in consulting to the minerals industry both independently (Vigar & Associates and now Mining Associates Pty Ltd, and Mining Associates Limited) and as an employee of the international consultancy, SRK Consulting.

My specific experience concerning the Lomonosovskoye Iron Project is my extensive experience in bulk mineral deposits in general and iron deposits in particular; including a detailed technical review and resource estimate for the Sishen deposits (Republic of South Africa), and Hope Downs (Western Australia), and reviews of various hematite and magnetite deposits in the Philippines, Indonesia, Papua New Guinea and Australia.

I was elected a Fellow of the Australasian Institute of Mining and Metallurgy ("The AusIMM") in 1993. My status as a Fellow of The AusIMM is current. I am a Member of the Society of Economic Geologists (Denver). I am recognized by the Australian Securities and Investments Commission and the Australian Stock Exchange as a Qualified Person for the submission of Independent Geologist's Reports.

I am responsible for all Sections of this Technical Report.

I have visited the Lomonosovskoye Iron Project site from 26th to 30th March 2012 and from 3rd December to 9th December 2013.

For the purposes of the Technical Report entitled: "Independent Technical Report on the Lomonosovskoye Iron Project, Republic of Kazakhstan" dated 17 April 2014, of which I am the author, I am a Qualified Person as defined in National Instrument 43-101 ("the Policy").

I have read the Policy and this technical report is prepared in compliance with its provisions. I have read the definition of "qualified person" set out in the Policy and certify that by reason of my education, affiliation with a professional association (as defined in the Policy) and past relevant work experience, I fulfil the requirement to be a "qualified person" for the purposes of the Policy.

At the effective date, to the best of my knowledge, information and belief, the portions of the technical report that I am responsible for contain all scientific and technical information that is required to be disclosed in order to make this report not misleading.

I have no direct or indirect interest in the properties which are the subject of this report. I do not hold, directly or indirectly, any shares in KMI Capital Inc. or other companies with interests in the iron exploration assets of KMI Capital Inc. I am independent of KMI Capital Inc. as described in Section 1.5 of the Companion Policy 43-101CP.

I do not hold, directly or indirectly, any shares in Safin Element GmbH, ("the Vendor"), or other companies with interests in the iron exploration assets of the Vendor. I am independent of the Vendor.

With the exception of the co-authorship of an independent valuation report dated December 2011, previous independent technical reports dated 12 April 2012 and 18 December 2012, I have had no prior involvement with the property which is the subject of this report. I do not hold any direct interest in any mineral tenements in Kazakhstan.

I will receive only normal consulting fees for the preparation of this report.

Dated at Hong Kong this 29th day of May, 2014.

Respectfully submitted,

Andrew James Vigar

BAppSc Geo, FAusIMM, MSEG

30 GLOSSARY OF TECHNICAL TERMS

This glossary comprises a general list of common technical terms that are typically used by geologists. The list has been edited to conform in general to actual usage in the body of this report. However, the inclusion of a technical term in this glossary does not necessarily mean that it appears in the body of this report, and no imputation should be drawn. Investors should refer to more comprehensive dictionaries of geology in printed form or available in the internet for a complete glossary.

"200 mesh"	the number of openings (200) in one linear inch of screen mesh (200 mesh approximately equals 75 microns)
"Au"	chemical symbol for gold
"block model"	A block model is a computer based representation of a deposit in which geological zones are defined and filled with blocks which are assigned estimated values of grade and other attributes. The purpose of the block model (BM) is to associate grades with the volume model. The blocks in the BM are basically cubes with the size defined according to certain parameters.
"bulk density"	The dry in-situ tonnage factor used to convert volumes to tonnage. Bulk density testwork is carried out on site and is relatively comprehensive, although samples of the more friable and broken portions of the mineralized zones are often unable to be measured with any degree of confidence, therefore caution is used when using the data. Bulk density measurements are carried out on selected representative samples of whole drill core wherever possible. The samples are dried and bulk density measured using the classical wax-coating and water immersion method.
"cut off grade"	The lowest grade value that is included in a resource statement. Must comply with JORC requirement 19 "reasonable prospects for eventual economic extraction" the lowest grade, or quality, of mineralized material that qualifies as economically mineable and available in a given deposit. May be defined on the basis of economic evaluation, or on physical or chemical attributes that define an acceptable product specification.
"diamond drilling, diamond core"	Rotary drilling technique using diamond set or impregnated bits, to cut a solid, continuous core sample of the rock. The core sample is retrieved to the surface, in a core barrel, by a wireline. The drill core is taken from the drill site to a secure compound at the Company's field camp and is logged by the geologist. The drill core is then split into two equal halves along its long axis, with one half being sampled at predetermined intervals, collected in calico bags and sent for analysis. The remaining half-core is retained in core boxes and stored on site for future reference. Core sizes are PQ3 (Ø 83 mm) from surface to approximately 50 metres depth, then HQ3 (Ø 61 mm) to the end of the hole.
"down-hole survey"	Drill hole deviation as surveyed down-hole by using a conventional single-shot camera and readings taken at regular depth intervals, usually every 50 metres.
"drill-hole database"	The drilling, surveying, geological and analyses database is produced by qualified personnel and is compiled, validated and maintained in digital and hardcopy formats.
"g/t"	grams per tonne, equivalent to parts per million
"g/t Au"	grams of gold per tonne
"gold assay"	Gold analysis is usually carried out by an independent ISO17025 accredited laboratory by classical 'Screen Fire Assay' technique that involves sieving a 900-1,000 gram sample to 200 mesh (~75 microns). The entire oversize and duplicate undersize fractions are fire assayed and the weighted average gold grade calculated. This is one of the most appropriate methods for determining gold content if there is a 'coarse gold' component to the mineralization.
"grade cap, also called top cut"	The maximum value assigned to individual informing sample composites to reduce bias in the resource estimate. They are capped to prevent over estimation of the total resource as they exert an undue statistical weight. Capped samples may represent "outliers" or a small high-grade portion that is volumetrically too small to be separately domained.
"inverse distance estimation"	It asserts that samples closer to the point of estimation are more likely to be similar to the sample at the estimation point than samples further away. Samples closer to the point of estimation are collected and weighted according to the inverse of their separation from

	the point of estimation, so samples closer to the point of estimation receive a higher weight than samples further away. The inverse distance weights can also be raised to a power, generally 2 (also called inverse distance squared). The higher the power, the more weight is assigned to the closer value. A power of 2 was used in the estimate used for comparison with the OK estimates.
"JORC"	The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves, 2004 (the "JORC Code" or "the Code"). The Code sets out minimum standards, recommendations and guidelines for Public Reporting in Australasia of Exploration Results, Mineral Resources and Ore Reserves. The definitions in the JORC Code are either identical to, or not materially different from, those similar codes, guidelines and standards published and adopted by the relevant professional bodies in Australia, Canada, South Africa, USA, UK, Ireland and many countries in Europe.
"JORC Inferred Resource"	That part of a Mineral Resource for which tonnage, grade and mineral content can be estimated with a low level of confidence. It is inferred from geological evidence and assumed but not verified geological and/or grade continuity. It is based on information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes which may be limited or of uncertain quality and reliability.
"JORC Indicated Resource"	That part of a Mineral Resource for which tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence. It is based on exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes. The locations are too widely or inappropriately spaced to confirm geological and/or grade continuity but are spaced closely enough for continuity to be assumed.
"JORC Measured Resource"	That part of a Mineral Resource for which tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence. It is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes. The locations are spaced closely enough to confirm geological and grade continuity.
"kriging neighbourhood analysis, or KNA"	The methodology for quantitatively assessing the suitability of a kriging neighbourhood involves some simple tests. It has been argued that KNA is a mandatory step in setting up any kriging estimate. Kriging is commonly described as a "minimum variance estimator" but this is only true when the block size and neighbourhood are properly defined. The objective of KNA is to determine the combination of search neighbourhood and block size that will result in conditional unbiasedness.
"lb"	Avoirdupois pound (= 453.59237 grams). Mlb = million avoirdupois pounds
"Ma"	Million years
"micron (µ)"	Unit of length (= one thousandth of a millimetre or one millionth of a metre).
"Mineral Resource"	A concentration or occurrence of material of intrinsic economic interest in or on the Earth's crust in such form, quality and quantity that there are reasonable prospects for eventual economic extraction. The location, quantity, grade, geological characteristics and continuity of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge. Mineral Resources are sub-divided, in order of increasing geological confidence, into Inferred, Indicated and Measured categories when reporting under JORC.
"Mo"	Chemical symbol for molybdenum
"molybdenum assay"	Molybdenum analysis is usually carried out by an independent ISO17025 accredited laboratory. The sample is dissolved in Aqua Regia (3:1 HCl:HNO3) and analysis is carried out by Inductively Coupled Plasma - Optical Emission Spectrometry (ICP-OES) method.
"nearest neighbour estimation" "Inferred"	Nearest Neighbour assigns values to blocks in the model by assigning the values from the nearest sample point to the block attribute of interest. that part of a Mineral Resource for which tonnage, grade and mineral content can be estimated with a low level of confidence. It is inferred from geological evidence and assumed but not verified geological and/or grade continuity. It is based on information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes which may be limited or of uncertain quality and reliability.
"ordinary Kriging estimation, or	Kriging is an inverse distance weighting technique where weights are selected via the variogram according to the samples distance and direction from the point of estimation.

The weights are not only derived from the distance between samples and the block to be estimated, but also the distance between the samples themselves. This tends to give much lower weights to individual samples in an area where the samples are clustered. OK is known as the "best linear unbiased estimator. The kriging estimates are controlled by the variogram parameters. The variogram model parameters are interpreted from the data while the search parameters are optimised during kriging neighbourhood analysis.
Troy ounce (= 31.103477 grams). Moz = million troy ounces
Quality Assurance/Quality Control. The procedures for sample collection, analysis and storage. Drill samples are despatched to 'certified' independent analytical laboratories for analyses. Blanks, Duplicates and Certified Reference Material samples are included with each batch of drill samples as part of the Company's QA/QC program. Mining Associates, as part of database management, monitors the results on a batch-by-batch basis.
Reverse Circulation drilling. A method of rotary drilling in which the sample is returned to the surface, using compressed air, inside the inner-tube of the drill-rod. A face-sampling hammer is used to penetrate the rock and provide crushed and pulverised sample to the surface without contamination. 1 metre samples are collected in a plastic bag from the bottom discharge chute of a cyclone. Sub-sample splits are collected in calico bags using a 'jones-type' riffle splitter to obtain a 3-4kg subsample for submission to the laboratories for analyses. RC is carried out using a face-sampling hammer with a bit diameter of 5¼" (ø 135mm).
Comprehensive surveying of drill hole positions, topography, and other cadastral features is carried out by the Company's surveyors using 'total station' instruments and independently verified on a regular basis. Locations are stored in both local drill grid and UTM coordinates.
Tonne (= 1 million grams)
The Variogram (or more accurately the Semi-variogram) is a method of displaying and modelling the difference in grade between two samples separated by a distance h, called the "lag" distance. It provides the mathematical model of variation with distance upon which the Krige estimation method is based.
This is created by using triangulation to produce an isometric projection of, for example, a rock type, mineralization envelope or an underground stope. Volumes can be determined directly of each solid.

31 Appendix 1: Historical drill holes

	- 7 \p	•		Table 2:	Historica	ol Drill Hole		Coordin	atos Ele	votion	Donth		
							55.		· ·			May	Hole
1 89438 95108 99.9 270.0 Expl 324 89709 95413 198.0 355.7 Search 2 90768 94652 202.5 480.0 Expl 326 89776 95044 197.1 517.6 Expl 4 89466 95205 200.0 220.0 Expl 326 89776 95044 197.1 517.6 Expl 5 89410 95013 200.0 220.0 Expl 330 90471 94710 201.4 1600.0 Expl 5 89410 95013 200.0 Expl 330 30471 94710 201.4 1600.0 Expl 7 89496 95307 200.7 10.0 Expl 331 90202 94394 202.5 1211.7 Expl 7 89496 95307 200.7 10.0 Expl 332 90267 94681 198.4 1394.5 Expl 338 90751 94672 202.4 470.0 Expl 332 90267 94681 198.4 1394.5 Expl 8 90736 94682 202.4 470.0 Expl 334 90575 95080 198.5 1374.0 Expl 336 90628 95073 199.9 929.3 Expl 9 90576 94772 201.3 10.0 Expl 336 90628 95073 199.9 929.3 Expl 9 90575 94672 202.4 470.0 Expl 337 90309 95097 200.0 791.0 Expl 338 90707 94744 201.8 220.0 Expl 337 90309 95097 200.0 791.0 Expl 331 900707 94744 201.8 220.0 Expl 332 90060 94697 202.4 1132.9 Expl 113 90797 94613 202.1 490.0 Expl 339 9168 95865 200.9 122.7 Geotace 122.9 122.0 122.9 122.9 122.9 122.9 122.9 122.9 122.9 122.9	Hole	North	East					Hole	North	East			
2 90766 94652 202.5 480.0 Expl 325 89775 94829 197.4 660.0 Expl 3 90784 89572 201.9 10.0 Expl 326 89776 89644 197.0 522.0 Expl 4 89466 95205 200.0 20.0 Expl 327 89778 95244 197.0 522.0 Expl 5 89410 95013 200.9 220.0 Expl 330 90471 94710 201.4 1600.0 Expl 6 89381 94915 201.3 205.0 Expl 331 90202 94384 202.5 1211.7 Expl 7 89496 98307 200.7 10.0 Expl 332 90267 94681 198.4 1394.5 Expl 8 90736 94882 202.4 470.0 Expl 334 90575 95980 198.5 1374.0 Expl 8 90751 94672 202.4 470.0 Expl 334 90575 95980 198.5 1374.0 Expl 39676 94772 201.3 10.0 Expl 337 90580 95073 199.9 929.3 Expl 10.9 2055 44772 201.3 10.0 Expl 337 90580 95073 199.9 929.3 Expl 10.9 2055 44752 201.3 10.0 Expl 337 90580 95077 200.0 791.0 Expl 10.9 2055 44752 201.3 10.0 Expl 337 90580 95687 200.0 791.0 Expl 10.9 2055 44522 202.6 290.0 Expl 390 90621 95674 201.1 1500.0 Expl 139.9 9775 94613 202.1 490.0 Expl 390 91066 95380 199.7 752.9 Expl 139.9 9976 94372 203.2 10.0 Expl 393 91051 95263 199.9 705.1 Expl 14 89272 205.2 200.0 Expl 390 90089 95303 199.5 100.4 Expl 15 89269 94530 203.3 10.0 Expl 399 90751 95263 199.9 705.1 Expl 15 89269 94530 203.3 10.0 Expl 399 90089 95303 199.5 100.4 Expl 15 89269 94530 203.3 10.0 Expl 399 90089 95303 199.5 100.4 Expl 15 89269 94530 203.3 10.0 Expl 399 90089 95303 199.5 100.4 Expl 15 89269 94530 203.3 10.0 Expl 399 90089 95303 199.5 100.4 Expl 15 89269 94585 203.5 Expl 15 89269 94585 203.5 Expl 140.0 Expl 399 90089 95303 199.5 100.4 Expl 15 89269 94585 203.5 Expl 140.0 Expl 400 9339 939 705.1 Expl 140.0 Expl	1	89438	95108					324	89709	95413			
3 90788 95572 201.9 10.0 Expl 326 89776 95044 197.1 517.6 Expl 5 89410 95013 200.9 220.0 Expl 330 90471 94710 201.4 1600.0 Expl 5 89410 95013 200.9 220.0 Expl 330 90471 94710 201.4 1600.0 Expl 5 89496 95307 200.7 10.0 Expl 332 90267 24394 202.5 121.7 Expl 8 90785 94692 202.4 470.0 Expl 332 90267 5 50580 198.5 13740 Expl 8 90751 94672 202.4 470.0 Expl 332 90267 5 50580 198.5 13740 Expl 8 90751 94672 202.4 470.0 Expl 336 90828 95073 199.9 929.3 Expl 9 90676 94772 201.3 10.0 Expl 336 90828 95073 199.9 929.3 Expl 9 90676 94772 201.3 10.0 Expl 336 90828 95073 199.9 929.3 Expl 9 90707 94734 201.8 280.0 Expl 336 90828 95073 199.9 929.3 Expl 10 90555 94692 200.3 10.0 Expl 370 90916 95686 200.0 791.0 Expl 10 90555 94692 202.1 490.0 Expl 370 90916 95686 200.9 123.7 Geotect 11 900797 94613 202.1 490.0 Expl 390 9066 95390 199.7 762.9 Expl 12 90857 94532 202.2 10.0 Expl 392 90666 94597 202.4 1132.9 Expl 14 89272 95199 201.6 10.0 Expl 394 90734 94386 204.0 642.0 Expl 15 89269 94530 203.3 10.0 Expl 398 90949 95030 199.9 705.1 Expl 16 89325 94722 202.5 10.0 Expl 398 90989 95303 199.9 706.1 Expl 17 89561 95413 202.5 10.0 Expl 398 90948 95303 199.9 704.2 Expl 17 89561 95413 202.5 10.0 Expl 400 90734 94863 200.0 740.0 Expl 20 9666 94532 203.3 10.0 Expl 400 90734 94863 200.0 740.0 Expl 20 9666 94532 203.3 10.0 Expl 400 90734 94863 200.0 740.0 Expl 20 9666 94533 203.3 10.0 Expl 400 90734 94863 200.0 740.0 Expl 20 9666 94532 203.3 300.0 Expl 400 90734 94863 200.0 740.0 Expl 20 9666													
4 89466 85205 200.0 200.0 Expl 327 89778 895244 197.0 \$529.0 Expl 5 89410 95013 200.9 220.0 Expl 330 99471 94710 201.4 1600.0 Expl 6 89381 94915 201.3 205.0 Expl 331 90202 94394 202.5 1211.7 Expl 8 90736 94689 202.4 470.0 Expl 332 90267 34661 198.4 13945 Expl 8 90736 94689 202.4 470.0 Expl 334 99575 95080 198.5 1374.0 Expl 338 90571 94672 202.4 300.0 Expl 336 90828 36073 199.9 329.3 Expl 390676 94772 201.3 10.0 Expl 338 90621 35674 201.1 799.9 293.3 Expl 390676 94772 201.3 10.0 Expl 338 90621 35674 201.1 799.9 293.3 Expl 390676 94772 201.3 10.0 Expl 338 90621 35650 200.9 723.7 Geotice 11 90797 94613 202.1 490.0 Expl 3360 90916 95686 200.9 123.7 Geotice 12 90857 94532 202.5 290.0 Expl 390 390676 94697 202.4 132.9 Expl 390976 94532 203.2 10.0 Expl 393 391051 95686 200.9 123.7 Geotice 13 90976 94532 203.2 10.0 Expl 393 391051 95686 200.9 123.7 Expl 394 3948													
5													
6 89381 94915 201.3 205.0 Expl 331 90202 94394 202.5 1211.7 Expl 8.9 93073 94680 9307 202.4 470.0 Expl 332 90567 94661 1984 13945 Expl 8.9 90736 94680 202.4 470.0 Expl 334 90575 95080 198.5 1374.0 Expl 9.9 90576 94677 201.3 10.0 Expl 336 9968 95077 200.0 791.0 Expl 9.9 993.0 50597 200.0 791.0 Expl 9.9 993.0 50597 200.0 791.0 Expl 9.9 993.0 50597 200.0 791.0 Expl 9.9 993.0 90576 94734 201.8 280.0 Expl 370 90916 95856 200.9 123.7 Geotier 10.9 9555 94852 203.3 10.0 Expl 370 90916 95856 200.9 123.7 Geotier 12.9 9657 94532 202.6 290.0 Expl 390 91066 95897 202.4 1132.9 Expl 13.9 90976 94372 203.2 10.0 Expl 393 91061 95856 200.9 123.7 Geotier 13.9 90976 94372 203.2 10.0 Expl 393 91061 95263 199.9 705.1 Expl 14.8 89272 95199 201.6 10.0 Expl 394 90734 94385 204.0 642.0 Expl 14.8 89272 94722 202.5 10.0 Expl 396 90898 95303 199.5 1004.9 Expl 14.8 9272 94722 202.5 10.0 Expl 398 90944 94393 919.9 442.5 Expl 14.8 9131 204.3 10.0 Expl 398 90944 94393 919.9 402.5 Expl 14.8 9131 204.3 10.0 Expl 400 90734 48663 200.0 740.0 Expl 19.9 9433 94385 200.0 740.0 Expl 19.9 9433 94385 200.0 740.0 Expl 19.9 9433 94385 9438 200.0 740.0 Expl 19.9 9433 9438 9						Expl							
Record R													
8													
88 a 90751 94672 202.4 300.0 Expl 336 90828 95073 199.9 293.0 Expl 9a 90767 94734 201.3 10.0 Expl 337 99916 95874 201.1 150.0 Expl 337 90916 95856 200.9 123.7 Geopte 11 90797 94613 202.1 480.0 Expl 390 91066 95836 199.9 762.9 Expl 12 90857 94532 202.6 290.0 Expl 392 90606 94697 202.4 1132.9 Expl 13 90976 94372 203.2 10.0 Expl 393 91051 95263 199.9 705.1 Expl 14 89272 95199 201.6 10.0 Expl 394 90734 94365 204.0 622.0 Expl 15 89269 94530 203.3 10.0 Expl 396 9981													
99 90676 94772 201.3 10.0 Expl 337 90930 95097 200.0 191.0 Expl 10 90950 95097 04734 201.8 2800.0 Expl 338 90821 95674 201.1 150.0 Expl 10 90555 94932 200.3 10.0 Expl 390 9106 95856 200.9 123.7 Geotec 11 90797 94613 202.1 490.0 Expl 390 9106 95856 200.9 123.7 Geotec 201.1 190797 94532 202.6 290.0 Expl 390 9106 95896 200.9 123.7 Geotec 201.1 190979 94532 202.6 290.0 Expl 392 90606 94697 202.4 113.2 9 Expl 13 90976 94532 203.2 10.0 Expl 393 91051 95263 199.9 705.1 Expl 14 89272 95199 201.6 10.0 Expl 394 910734 94365 204.0 642.0 Expl 15 89269 94530 203.3 10.0 Expl 394 910734 94365 204.0 642.0 Expl 15 89269 94530 203.3 10.0 Expl 396 90889 95303 199.5 100.4.9 Expl 16 83825 94722 202.5 10.0 Expl 398 90814 95177 199.2 1146.3 Expl 17 89551 95413 202.5 10.0 Expl 398 90814 95177 199.2 1146.3 Expl 19 91037 94292 204.1 10.0 Expl 400 90734 94863 200.0 740.0 Expl 19 91037 94292 204.1 10.0 Expl 400 90734 94863 200.0 740.0 Expl 19 91037 94292 204.1 10.0 Expl 400 90734 94663 200.0 740.0 Expl 20 90606 94533 203.7 250.0 Expl 402 90743 95178 199.0 120.0 Expl 22 90926 94772 200.3 360.0 Expl 404 90884 94829 200.1 511.2 Expl 22 90926 94772 200.3 360.0 Expl 404 90884 94829 200.1 511.2 Expl 23 91218 94052 204.6 10.0 Expl 406 90749 95008 199.4 793.5 Expl 24 91097 94212 204.6 10.0 Expl 406 90749 95008 199.4 793.5 Expl 24 91097 94212 204.6 10.0 Expl 406 90665 94558 200.1 822.0 Expl 27 90543 94612 202.9 10.0 Expl 411 90631 95001 199.8 110.0 Expl 28 91048 94984 201.8 10.0 Expl 411 90631 95001 199.8 110.0 Expl 29 91295 95114 201.0 10.0 Expl 411 90681 95037 197.8 120.0 Expl 30 91266 9453 203.0 Expl 416 90415 95011 199.8 110.0 Expl 30 90866 9453 203.0 Expl 417 90805 94373 203.0 Expl 418 90452 94064 203.1 171.2 Expl 30 9449 9449 94411 203.5 10.0 Expl 418 90687 94754 201.5 873.0 Expl 30 94868 94068 94069 200.0 Expl 418 90687 94754 201.5 873.0 Expl 30 94868 94068 94069 200.0 Expl 417 90865 94598 200.1 822.0 Expl 30 94868 94688 200.1 822.0 Expl 30 9468 94689 200.0 Expl 441 90687 94754 201.5 873.0 Expl 30 9489 9489 9489 200.0 Expl 441 90865 94598 9						Expl							
98 90707 94734 201.8 280.0 Expl 338 90821 99674 201.1 1500.0 Expl 101 90565 94392 200.3 100.0 Expl 370 99016 95866 200.9 123.7 Geotec 11 90797 94613 202.1 490.0 Expl 390 91066 95390 199.7 762.9 Expl 13 90876 94532 202.6 280.0 Expl 392 90606 94697 202.4 1132.9 Expl 13 90976 94372 203.2 10.0 Expl 393 91061 95263 199.9 705.1 Expl 14 89272 95199 201.6 10.0 Expl 394 90734 94365 204.0 642.0 Expl 15 89269 94530 203.3 10.0 Expl 396 90889 95330 199.5 100.4 Expl 16 89325 94722 202.5 10.0 Expl 396 90889 95330 199.5 100.4 Expl 17 89551 95413 204.3 10.0 Expl 396 90884 95333 199.5 1040.4 Expl 18 91158 94131 204.3 10.0 Expl 399 90814 95177 199.2 1146.3 Expl 18 91158 94131 204.3 10.0 Expl 400 90734 94863 200.0 740.0 Expl 20 90606 94533 203.7 250.0 Expl 401 91078 94736 200.4 279.0 Expl 20 90606 94533 203.7 250.0 Expl 402 90743 95178 199.0 120.0 Expl 22 90266 94772 200.3 360.0 Expl 405 90825 94906 200.0 740.0 Expl 22 90266 94772 200.3 360.0 Expl 404 90884 94829 200.1 511.2 Expl 22 90266 94772 200.3 360.0 Expl 405 90825 94906 200.0 740.0 Expl 22 90266 94772 200.3 360.0 Expl 406 90749 95008 199.4 793.5 Expl 24 91097 94212 204.6 10.0 Expl 407 90627 95171 199.8 133.0 Expl 26 90666 94453 203.8 10.0 Expl 411 90631 95001 199.8 133.0 Expl 27 90543 94682 203.0 174.0 Expl 411 90631 95001 199.8 133.0 Expl 28 94689 94689 203.0 174.4 Expl 28 94689 94689 203.0 174.4 Expl 28 94689 94689 94689 203.0 174.4 Expl 24 90666 94653 203.8 203.0 Expl 4414 90589 94878 201.5 873.0 Expl 24 90666 94653 203.8 203.0													
10 90555 94932 200.3 10.0 Expl 370 90916 96856 200.9 123.7 Geotec													
111 90797 94613 202.1 490.0 Expl 390 91066 95390 199.7 762.9 Expl 290857 94532 202.6 290.0 Expl 392 90606 94697 202.4 1132.9 Expl 13 90976 94372 203.2 10.0 Expl 393 91051 95263 199.9 705.1 Expl 14 89272 95199 201.6 10.0 Expl 394 90734 94365 204.0 642.0 Expl 16 89325 94722 202.5 10.0 Expl 396 90698 94530 399.5 1004.9 Expl 16 89325 94722 202.5 10.0 Expl 396 91049 94939 199.9 442.5 Expl 17 89551 95413 202.5 10.0 Expl 399 90144 91777 199.2 1146.3 Expl 18 91158 94131 204.3 10.0 Expl 400 90734 94863 200.0 740.0 Expl 19 19037 84722 203.1 10.0 Expl 400 90734 94863 200.0 740.0 Expl 20 90606 94533 203.7 250.0 Expl 402 90743 95178 199.0 1200.0 Expl 21 91324 95075 201.2 10.0 Expl 405 90825 94966 200.1 740.0 Expl 22 9926 94772 203.3 360.0 Expl 405 90825 94966 200.0 740.0 Expl 23 91218 94052 204.6 10.0 Expl 407 90827 94960 200.0 740.0 Expl 24 91079 94212 204.6 10.0 Expl 407 90827 94960 200.0 740.0 Expl 24 91079 94212 204.6 10.0 Expl 407 90627 95171 199.8 1330.5 Expl 24 91079 94212 204.6 10.0 Expl 407 90627 95171 199.8 1330.5 Expl 24 91079 94212 204.6 10.0 Expl 407 90627 94774 95174 99.8 1330.5 Expl 26 90666 94453 203.8 10.0 Expl 410 90665 94958 200.1 842.0 Expl 24 90686 94694 9													Geotech
12 90857 94532 202.6 290.0 Expl 392 90606 94697 202.4 1132.9 Expl 13 90976 94372 203.2 10.0 Expl 393 91051 95263 199.9 705.1 Expl 14 89272 95199 201.6 10.0 Expl 394 90734 94365 204.0 642.0 Expl 16 88269 94530 203.3 10.0 Expl 396 90896 95303 199.5 1004.9 Expl 17 89551 95413 202.5 10.0 Expl 398 91049 94939 199.9 442.5 Expl 17 89551 95413 202.5 10.0 Expl 398 990814 95177 199.2 1146.3 Expl 17 89551 95413 202.5 10.0 Expl 400 90734 94683 200.0 740.0 Expl 19 91037 94292 204.1 10.0 Expl 400 90734 94683 200.0 740.0 Expl 20 90606 94533 203.7 250.0 Expl 402 90743 95178 199.0 1200.0 Expl 20 90606 94533 203.7 250.0 Expl 404 90884 94829 200.1 5511.2 Expl 22 90926 94772 200.3 380.0 Expl 405 90825 94906 200.0 740.0 Expl 22 90926 94772 200.3 380.0 Expl 405 90825 94906 200.0 740.0 Expl 22 90926 94772 200.3 380.0 Expl 406 90825 94906 200.0 740.0 Expl 24 91097 94212 204.6 10.0 Expl 407 90627 95171 199.8 1330.5 Expl 24 91097 94212 204.6 10.0 Expl 407 90627 95171 199.8 1330.5 Expl 24 91097 94212 204.6 10.0 Expl 407 90627 95171 199.8 1330.5 Expl 24 91097 94212 204.6 10.0 Expl 410 90637 95001 199.8 130.0 Expl 25 95144 201.0 10.0 Expl 411 90637 95001 199.8 130.0 Expl 25 95144 201.0 10.0 Expl 414 90637 95001 199.8 130.5 Expl 25 95142 201.0 201.0 Expl 414 90637 95001 199.8 130.0 Expl 33 90425 95118 98.2 1714.8 Expl 33 90425 95144 201.0 10.0 Expl 414 90638 94698 201.2 110.0 Expl 33 90575 94754 201.5 873.0 Expl 414 90638 94694 201.8 10.0 Expl 441 90638 94694 201.8 10.0 Expl 441 90638 94694 201.8													
13 90976 94372 203.2 10.0 Expl 393 91051 95263 199.9 705.1 Expl 148 89272 95199 201.6 10.0 Expl 394 90734 94365 204.0 642.0 Expl 16 89325 94530 203.3 10.0 Expl 396 90898 95303 199.5 1004.9 Expl 17 89551 95413 202.5 10.0 Expl 399 90814 95177 199.2 1104.3 Expl 18 91158 94131 204.3 10.0 Expl 400 90734 94863 200.0 740.0 Expl 200.9 200.0 2													
14													
15													
16													
17												442.5	
18													
191037 94/292 204.1 10.0 Expl 401 91/078 947/36 200.4 279.0 Expl 200 90606 94533 203.7 250.0 Expl 402 90743 95178 199.0 1200.0 Expl 22 90926 94772 200.3 360.0 Expl 405 90825 94906 200.0 740.0 Expl 23 91218 94052 204.6 10.0 Expl 406 90749 95008 199.4 793.5 Expl 24 91097 94212 204.6 10.0 Expl 407 90627 95171 199.8 1330.5 Expl 26 90666 94453 203.8 10.0 Expl 407 90627 95171 199.8 1330.5 Expl 27 90543 94612 202.9 10.0 Expl 4409 90666 94958 200.1 822.0 Expl 28 90466 94694 201.8 10.0 Expl 4113 90687 94754 201.5 873.0 Expl 29 91295 95114 201.0 10.0 Expl 4113 90687 94754 201.5 873.0 Expl 29 91295 95114 201.0 10.0 Expl 4114 90588 94878 201.2 1108.0 Expl 31 90957 94732 203.0 520.0 Expl 4116 90415 95118 198.2 1714.8 Expl 31 90957 94732 203.0 520.0 Expl 4116 90415 95118 198.2 1714.8 Expl 31 90957 94732 203.0 520.0 Expl 418 90745 94510 203.2 443.7 Expl 344 90449 94411 203.5 10.0 Expl 418 90745 94510 203.2 443.7 Expl 33 91295 94373 200.0 285.0 Expl 419 90685 94594 203.1 1172.0 Expl 34 90449 94411 203.5 10.0 Expl 422 90512 94820 200.6 1281.6 Expl 33 90871 94851 109.3 390.0 Expl 424 90688 94894 203.1 1172.0 Expl 33 90895 94893 200.1 10.0 Expl 424 90688 94894 203.1 1172.0 Expl 424 90688 94894 203.1 1172.0 Expl 424 90688 94894 203.1 1172.0 Expl 424 90688 94894 203.6 498.5 Expl 449 94841 94841 203.5 Expl 449 94841													
20 90606 94533 203.7 250.0 Expl 402 90743 95178 199.0 1200.0 Expl 21 91324 95075 201.2 10.0 Expl 404 90884 94829 200.1 511.2 Expl 22 90926 94772 200.3 360.0 Expl 405 90825 94906 200.0 740.0 Expl 23 91218 94052 204.6 10.0 Expl 406 90749 95008 199.4 793.5 Expl 24 91097 94212 204.6 10.0 Expl 407 90627 95171 199.8 1330.5 Expl 26 90666 94453 203.8 10.0 Expl 409 90665 94958 200.1 822.0 Expl 27 90543 94612 202.9 10.0 Expl 411 90631 95001 199.8 1100.0 Expl 28 90486 94694 201.8 10.0 Expl 411 90631 95001 199.8 1100.0 Expl 29 91295 95114 201.0 10.0 Expl 414 90598 94878 201.2 1108.0 Expl 29 91295 95114 201.0 10.0 Expl 414 90598 94878 201.2 1108.0 Expl 23 91199 95243 203.0 520.0 Expl 417 90805 94431 203.5 320.3 Expl 33 90957 94732 203.0 520.0 Expl 417 90805 94431 203.5 320.3 Expl 33 91225 94373 200.0 285.0 Expl 417 90805 94594 203.1 172.0 Expl 349 90649 94411 203.5 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 33 90985 94891 201.1 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 33 90871 94851 201.1 10.0 Expl 424 90658 94494 203.6 790.6 Expl 33 90865 94891 201.1 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 33 90865 94891 201.1 10.0 Expl 426 90537 94494 203.6 790.0 Expl 441 91086 94892 919.9 285.0 Expl 4426 90568 94495 203.6 498.5 Expl 449 90685 94494 203.6 790.0 Expl 4428 90548 94994 94847 197.7 1399.0 Expl 4438 90871 94851 199.9 285.0 Expl 4428 90525 94475 203.6 498.5 Expl 449 94866 94894 201.7 10.0 Expl 438 90507 94494 203.6 790.0 Expl 439 94638 94993 199.0 Expl 4438 89600 94788 199.5 1497.													
21 91324 95075 201.2 10.0 Expl 404 90884 94829 200.1 511.2 Expl 22 90926 94772 200.3 360.0 Expl 405 90825 94906 200.0 740.0 Expl 23 91218 94052 204.6 10.0 Expl 406 90749 95008 199.4 793.5 Expl 24 91097 94212 204.6 10.0 Expl 407 90627 95171 199.8 1330.5 Expl 26 90666 94453 203.8 10.0 Expl 409 90665 94958 200.1 822.0 Expl 27 90543 94612 202.9 10.0 Expl 411 90631 95001 199.8 1100.0 Expl 28 90486 94694 201.8 10.0 Expl 411 90631 95001 199.8 1100.0 Expl 29 91295 95114 201.0 10.0 Expl 414 90598 94754 201.5 873.0 Expl 29 91295 95114 201.0 10.0 Expl 414 90598 94878 201.2 1108.0 Expl 30 91266 95167 200.6 150.0 Expl 416 90415 95118 198.2 1714.8 Expl 31 90957 94732 203.0 520.0 Expl 417 90805 94431 203.5 320.3 Expl 32 91199 95243 200.0 285.0 Expl 418 90745 94820 203.1 1172.0 Expl 34 90449 94411 203.5 300.0 Expl 419 90685 94594 203.1 1172.0 Expl 34 90449 94411 203.5 300.0 Expl 420 90512 94820 200.6 1281.6 Expl 36 91016 94651 201.1 10.0 Expl 422 90568 94295 204.8 277.3 Expl 37 90985 94693 200.6 195.0 Expl 422 90568 94295 204.8 277.3 Expl 39 90806 94932 193.9 10.0 Expl 428 90244 94847 197.7 1399.0 Expl 429 90668 94295 204.8 277.3 Expl 429 9109 95033 193.8 460.0 Expl 428 90244 94847 197.7 1399.0 Expl 429 9109 95033 193.8 10.0 Expl 428 90244 94847 197.7 1399.0 Expl 429 9109 95033 193.8 460.0 Expl 428 90244 94847 197.7 1399.0 Expl 429 9109 95033 193.8 460.0 Expl 431 90159 94638 197.7 1367.0 Expl 431 91066 94533 202.3 10.0 Expl 433 89766 94985 197.7 486.2 Expl 439 96865 94693 197.7 1367.0													
22 90926 94772 200.3 360.0 Expl 406 90825 94906 200.0 740.0 Expl 23 91218 94052 204.6 10.0 Expl 407 90627 95171 199.8 1330.5 Expl 24 91097 94212 204.6 10.0 Expl 407 90627 95171 199.8 1330.5 Expl 26 90666 94453 203.8 10.0 Expl 409 90665 94958 200.1 822.0 Expl 27 90543 94612 202.9 10.0 Expl 411 90631 95001 199.8 1100.0 Expl 28 90486 94694 201.8 10.0 Expl 411 90631 95001 199.8 1100.0 Expl 29 91295 95114 201.0 10.0 Expl 414 90598 94878 201.5 873.0 Expl 29 91295 95114 201.0 10.0 Expl 416 90415 95118 198.2 1714.8 Expl 33 91286 95167 200.6 150.0 Expl 416 90415 95118 198.2 1714.8 Expl 33 91295 94373 200.0 10.0 Expl 418 90745 94510 203.2 443.7 Expl 33 91225 94373 200.0 285.0 Expl 419 90685 94594 203.1 1172.0 Expl 34 90449 94411 203.5 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 35 90899 94811 203.3 390.0 Expl 421 90354 95037 197.8 1501.3 Expl 36 91016 94651 201.1 10.0 Expl 422 90658 94295 204.8 277.3 Expl 39 90805 94693 200.6 195.0 Expl 425 90525 94475 203.6 498.5 Expl 39 90806 94932 193.9 10.0 Expl 426 90537 94494 203.6 790.0 Expl 429 91066 94892 193.9 285.0 Expl 427 90355 94698 198.5 1497.8 Expl 429 91066 94892 193.9 285.0 Expl 428 90444 9444 197.7 1399.0 Expl 429 90685 94698 198.5 Expl 449 91466 94564 200.2 280.0 Expl 430 90613 95321 201.9 1400.0 Expl 449 91486 94694 201.7 10.0 Expl 431 90159 94638 197.7 1399.0 Expl 449 91486 94694 201.7 10.0 Expl 433 89776 94937 197.5 606.7 Expl 449 91486 94694 201.7 10.0 Expl 433 89776 94937 197.5 606.7 Expl 449 91486 94694 200.1 10.0 Expl 4													
23 91218 94052 204.6 10.0 Expl 406 90749 95008 199.4 793.5 Expl 24 91097 94212 204.6 10.0 Expl 407 90627 95171 199.8 1330.5 Expl 26 90666 94453 203.8 10.0 Expl 409 90665 94958 200.1 822.0 Expl 27 90543 94612 202.9 10.0 Expl 411 90631 95001 199.8 1100.0 Expl 28 90486 94694 201.8 10.0 Expl 411 90631 95001 199.8 1100.0 Expl 29 91295 95114 201.0 10.0 Expl 414 90598 94878 201.2 1108.0 Expl 30 91266 95167 200.6 150.0 Expl 416 90415 95118 198.2 1714.8 Expl 31 90957 94732 203.0 520.0 Expl 417 90805 94431 203.5 320.3 Expl 32 91199 95243 200.0 10.0 Expl 418 90745 94510 203.2 443.7 Expl 33 91225 94373 200.0 285.0 Expl 419 90685 94594 203.1 1172.0 Expl 34 90449 94411 203.5 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 35 90899 94811 203.3 390.0 Expl 421 90354 95037 197.8 1501.3 Expl 36 91016 94651 201.1 10.0 Expl 424 90658 94295 204.8 277.3 Expl 37 90985 94693 200.6 195.0 Expl 426 90537 94494 203.6 790.0 Expl 427 90355 94494 203.6 790.0 Expl 428 90537 94494 203.6 790.0 Expl 429 91068 94934 203.6 790.0 Expl 429 91068 94934 203.6 790.0 Expl 429 91068 94892 199.9 285.0 Expl 428 90537 94494 203.6 790.0 Expl 429 91068 94934 203.6 790.0 Expl 429 91068 94894 919.9 285.0 Expl 428 90537 94494 203.6 790.0 Expl 429 91068 94932 199.8 460.0 Expl 428 90537 94494 203.6 790.0 Expl 429 91068 94934 203.6 790.0 Expl 428 90537 94494 203.6 790.0 Expl 429 91068 94934 203.6 790.0 Expl 431 90159 94638 197.7 1399.0 Expl 431 90159 94638 197.7 1399.0 Expl 431 90159 94638 197.7 1399.0 Expl 431 90159 94638 197.7 4						Expl							
24													
26													
27 90543 94612 202.9 10.0 Expl 411 90631 95001 199.8 1100.0 Expl 29 91295 95114 201.0 10.0 Expl 413 90687 94754 201.5 873.0 Expl 30 91266 95167 200.6 150.0 Expl 416 90415 95118 198.2 1714.8 Expl 31 90957 94732 203.0 520.0 Expl 417 90805 94431 203.5 320.3 Expl 32 91199 95243 200.0 10.0 Expl 418 90745 94510 203.5 320.3 Expl 32 91199 95243 200.0 10.0 Expl 418 90745 94510 203.2 443.7 Expl 33 91225 94373 200.0 285.0 Expl 419 90685 94594 203.1 1172.0 Expl 34 90449 94411 203.5 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 35 90899 94811 200.3 390.0 Expl 421 90354 95037 197.8 1501.3 Expl 36 91016 94651 201.1 10.0 Expl 424 90658 94295 204.8 277.3 Expl 37 90985 94693 200.6 195.0 Expl 425 90525 94475 203.6 498.5 Expl 39 90806 94932 193.9 10.0 Expl 426 90537 94494 203.6 790.0 Expl 421 91086 94894 203.6 790.0 Expl 421 91086 94894 198.5 Expl 422 90525 94475 203.6 498.5 Expl 421 91086 94894 198.5 1497.8 Expl 421 91086 94894 198.5 1497.8 Expl 422 9109 94698 198.5 Expl 423 9109 94698 198.5 Expl 424 90658 94698 198.5 Expl 425 90525 9475 203.6 498.5 Expl 426 90537 94494 9441 94496 94932 193.9 10.0 Expl 428 90244 94847 197.7 1399.0 Expl 429 9102 945033 199.8 460.0 Expl 433 90613 94534 197.7 1399.0 Expl 442 91086 94833 202.3 10.0 Expl 433 89776 94738 197.8 412.4 Expl 444 91486 94694 201.7 10.0 Expl 433 89776 94738 197.5 606.7 Expl 448 91006 94533 202.3 10.0 Expl 433 89776 94738 197.5 606.7 Expl 448 91006 95323 199.6 10.0 Expl 433 89700 95156 197.7 486.2 Expl 449 90885 95494 200.0 10.0 Expl 43													
28 90486 94694 201.8 10.0 Expl 413 90687 94754 201.5 873.0 Expl 29 91295 95114 201.0 10.0 Expl 414 90598 94878 201.2 1108.0 Expl 30 91266 95167 200.6 150.0 Expl 416 90415 95118 198.2 1714.8 Expl 31 90957 94732 203.0 520.0 Expl 417 90805 94431 203.5 320.3 Expl 32 91199 95243 200.0 10.0 Expl 418 90745 94510 203.2 443.7 Expl 33 91225 94373 200.0 285.0 Expl 419 90685 94594 203.1 1172.0 Expl 34 90449 94411 203.5 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 35 90899 94811 200.3 390.0 Expl 421 90354 95037 197.8 1501.3 Expl 36 91016 94651 201.1 10.0 Expl 424 90686 94295 204.8 277.3 Expl 37 90985 94693 200.6 195.0 Expl 424 90686 94295 204.8 277.3 Expl 38 90871 94851 199.9 285.0 Expl 426 90537 94494 203.6 790.0 Expl 40 91166 94954 200.2 280.0 Expl 427 90355 94698 198.5 1497.8 Expl 429 9102 95033 199.8 460.0 Expl 430 90613 95321 201.9 1400.0 Expl 429 91102 95033 199.8 460.0 Expl 431 90159 94638 197.7 1367.0 Expl 429 9102 95033 199.8 460.0 Expl 433 89776 94738 197.8 412.4 Expl 448 91486 94694 201.7 10.0 Expl 433 89776 94738 197.5 606.7 Expl 449 90865 94593 200.1 10.0 Expl 433 89776 94738 197.8 412.4 Expl 449 90865 94892 199.9 200.0 Expl 433 89776 94738 197.8 412.4 Expl 449 90865 94894 200.0 Expl 431 90159 94638 197.7 1367.0 Expl 449 90865 9489													
29 91295 95114 201.0 10.0 Expl 414 90598 94878 201.2 1108.0 Expl 30 91266 95167 200.6 150.0 Expl 416 90415 95118 198.2 1714.8 Expl 31 90957 94732 203.0 520.0 Expl 417 90805 94431 203.5 320.3 Expl 32 91199 95243 200.0 10.0 Expl 418 90745 94510 203.2 443.7 Expl 33 91225 94373 200.0 285.0 Expl 419 90685 94594 203.1 1172.0 Expl 34 90449 94411 203.5 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 35 90899 94811 200.3 390.0 Expl 421 90354 95037 197.8 1501.3 Expl 35 90899 94811 200.3 390.0 Expl 424 90658 94295 204.8 277.3 Expl 37 90985 94693 200.6 195.0 Expl 425 90525 94475 203.6 498.5 Expl 39 90806 94932 193.9 10.0 Expl 427 90355 94698 198.5 Expl 400 91166 94954 200.2 280.0 Expl 428 90244 94847 197.7 1399.0 Expl 429 91102 95033 199.8 460.0 Expl 433 89776 94937 197.5 606.7 Expl 43 91606 94533 202.3 10.0 Expl 432 89776 94937 197.5 606.7 Expl 444 91486 94694 201.7 10.0 Expl 432 89776 94937 197.5 606.7 Expl 448 91066 94533 202.3 10.0 Expl 433 89776 94937 197.5 606.7 Expl 448 9106 95323 199.6 10.0 Expl 433 89776 94937 197.5 606.7 Expl 448 91066 94533 200.1 10.0 Expl 434 89600 94788 198.0 398.5 Expl 449 90885 95494 200.0 10.0 Expl 438 89700 95156 197.7 487.1 Expl 448 91066 95323 199.6 10.0 Expl 438 89700 95156 197.7 487.1 Expl 549 90885 95494 200.0 10.0 Expl 443 89600 95365 198.0 398.5 Expl 55 91189 99070 95731 201.3 10.0 Expl 443 89507 95062 198.0 494.9 Expl 55 91189 99070 20.5 10.0 Expl 444 89557 95062 198.0 494.9 Expl 55 91189 99070 20.5 10.0 Expl 444 89557 95062 198.0 494.9 Expl													
30 91266 95167 200.6 150.0 Expl 416 90415 95118 198.2 1714.8 Expl 31 90957 94732 203.0 520.0 Expl 417 90805 94431 203.5 320.3 Expl 32 91199 95243 200.0 10.0 Expl 418 90745 94510 203.2 443.7 Expl 33 91225 94373 200.0 285.0 Expl 419 90685 94594 203.1 1172.0 Expl 34 90449 94411 203.5 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 35 90899 94811 200.3 390.0 Expl 421 90354 95037 197.8 1501.3 Expl 36 91016 94651 201.1 10.0 Expl 424 90658 94295 204.8 277.3 Expl 37 90985 94693 200.6 195.0 Expl 425 90525 94475 203.6 498.5 Expl 38 90871 94851 199.9 285.0 Expl 426 90537 94494 203.6 790.0 Expl 429 90354 94934 203.6 790.0 Expl 429 90355 94698 198.5 1497.8 Expl 429 90355 94698 198.5 1497.8 Expl 429 90355 94694 203.6 790.0 Expl 429 90355 94694 94954 202.2 280.0 Expl 428 90244 94847 197.7 1399.0 Expl 429 91102 95033 199.8 460.0 Expl 430 90613 95321 201.9 1400.0 Expl 43 91606 94533 202.3 10.0 Expl 432 89776 94738 197.8 412.4 Expl 449 9486 94694 201.7 10.0 Expl 432 89776 94738 197.8 412.4 Expl 449 9486 95044 200.1 10.0 Expl 433 89776 94937 197.5 606.7 Expl 449 90885 95494 200.0 10.0 Expl 436 89690 95166 197.7 487.1 Expl 49 90885 95494 200.0 10.0 Expl 438 89700 95156 197.7 486.2 Expl 439 90850 59891 202.0 10.0 Expl 443 89500 95156 197.7 486.2 Expl 59 90580 95891 202.0 10.0 Expl 443 89500 95156 197.7 486.2 Expl 59 90580 95891 202.0 10.0 Expl 443 89500 95156 197.7 486.2 Expl 59 90580 95891 202.0 10.0 Expl 444 89557 95602 198.0 494.9 Expl 55 91189 95057 200.1 400.0 Expl 444 89559 95245 197.9 57													
31 90957 94732 203.0 520.0 Expl 417 90805 94431 203.5 320.3 Expl 32 91199 95243 200.0 10.0 Expl 418 90745 94510 203.2 443.7 Expl 33 91225 94373 200.0 285.0 Expl 419 90685 94594 203.1 1172.0 Expl 34 90449 94411 203.5 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 35 90899 94811 200.3 390.0 Expl 421 90354 95037 197.8 1501.3 Expl 36 91016 94651 201.1 10.0 Expl 424 90658 94295 204.8 277.3 Expl 37 90985 94693 200.6 195.0 Expl 425 90525 94475 203.6 498.5 Expl 38 90871 94851 199.9 285.0 Expl 426 90537 94494 203.6 790.0 Expl 39 90806 94932 193.9 10.0 Expl 427 90355 94698 198.5 1497.8 Expl 428 90244 94847 197.7 1399.0 Expl 429 91102 95033 199.8 460.0 Expl 430 90613 95321 201.9 1400.0 Expl 429 91102 95033 199.8 460.0 Expl 431 90159 94638 197.7 1367.0 Expl 448 94694 201.7 10.0 Expl 432 89776 94738 197.8 412.4 Expl 448 91466 94583 200.1 10.0 Expl 433 89760 94788 198.4 346.0 Expl 448 94694 201.7 10.0 Expl 433 89600 94788 198.4 346.0 Expl 448 91066 95323 199.6 10.0 Expl 433 89600 94788 198.4 346.0 Expl 448 91066 95323 199.6 10.0 Expl 433 89760 94788 198.0 398.5 Expl 449 90885 95494 200.0 10.0 Expl 433 89700 95166 197.7 901.2 Expl 449 90885 95494 200.0 10.0 Expl 438 89700 95166 197.7 487.1 Expl 549 90885 95494 200.0 10.0 Expl 438 89700 95166 197.7 487.1 Expl 549 90885 95494 200.0 10.0 Expl 438 89700 95166 197.7 487.1 Expl 55 91189 96050 200.5 10.0 Expl 444 89547 94961 198.1 600.0 Expl 53 90459 96050 200.5 10.0 Expl 444 89547 94961 198.1 600.0 Expl 54 91106 94534 202.7 10.0 Expl 444 89547													
32 91199 95243 200.0 10.0 Expl 418 90745 94510 203.2 443.7 Expl 33 91225 94373 200.0 285.0 Expl 419 90685 94594 203.1 1172.0 Expl 34 90449 94411 203.5 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 35 90899 94811 200.3 390.0 Expl 421 90354 95037 197.8 1501.3 Expl 36 91016 94651 201.1 10.0 Expl 424 90658 94295 204.8 277.3 Expl 277.3													
33 91225 94373 200.0 285.0 Expl 419 90685 94594 203.1 1172.0 Expl 34 90449 94411 203.5 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 35 90899 94811 200.3 390.0 Expl 421 90354 95037 197.8 1501.3 Expl 36 91016 94651 201.1 10.0 Expl 424 90658 94295 204.8 277.3 Expl 37 90985 94693 200.6 195.0 Expl 425 90525 94475 203.6 498.5 Expl 38 90871 94851 199.9 285.0 Expl 426 90537 94494 203.6 790.0 Expl 40 91166 94954 200.2 280.0 Expl 428 90244 94847 197.7 1399.0 Expl 429 91102 95033 199.8 460.0 Expl 430 90613 95321 201.9 1400.0 Expl 430 91606 94533 202.3 10.0 Expl 431 90159 94638 197.7 1367.0 Expl 448 91486 94694 201.7 10.0 Expl 432 89776 94738 197.8 412.4 Expl 445 91367 94853 200.1 10.0 Expl 433 89760 94788 198.4 346.0 Expl 436 89600 94788 198.4 346.0 Expl 439 89766 94397 197.5 606.7 Expl 447 91127 95172 199.9 10.0 Expl 436 89690 95016 197.7 901.2 Expl 48 91006 95323 199.6 10.0 Expl 436 89690 95016 197.7 901.2 Expl 48 91006 95332 199.6 10.0 Expl 438 89700 95205 197.7 486.2 Expl 49 90885 95494 200.0 10.0 Expl 438 89700 95205 197.7 486.2 Expl 51 90700 95731 201.3 10.0 Expl 438 89701 95381 197.7 418.0 Expl 52 90580 95891 202.0 10.0 Expl 443 89507 95005 197.7 486.2 Expl 55 91189 95097 200.1 400.0 Expl 444 89547 94961 198.1 600.0 Expl 55 91189 95097 200.1 400.0 Expl 444 89547 94961 198.1 600.0 Expl 55 91189 95097 200.1 400.0 Expl 444 89595 95245 197.9 573.8 Expl 57 91146 94813 199.9 10.0 Expl 444 89595 95245 197.9 573.8 Expl 57 91146 94813 199.9 10.0 Expl 444 89585 95245 197.9 573.8 Expl													
34 90449 94411 203.5 10.0 Expl 420 90512 94820 200.6 1281.6 Expl 35 90899 94811 200.3 390.0 Expl 421 90354 95037 197.8 1501.3 Expl 36 91016 94651 201.1 10.0 Expl 424 90658 94295 204.8 277.3 Expl 37 90985 94693 200.6 195.0 Expl 425 90525 94475 203.6 498.5 Expl 38 90871 94851 199.9 285.0 Expl 426 90537 94494 203.6 790.0 Expl 40 91166 94932 193.9 10.0 Expl 427 90355 94698 198.5 1497.8 Expl 40 91166 94932 199.9 285.0 Expl 430 90613 95321 201.9 1400.0 Expl 42 <td></td>													
35 90899 94811 200.3 390.0 Expl 421 90354 95037 197.8 1501.3 Expl 36 91016 94651 201.1 10.0 Expl 424 90658 94295 204.8 277.3 Expl 37 90985 94693 200.6 195.0 Expl 425 90525 94475 203.6 498.5 Expl 38 90871 94851 199.9 285.0 Expl 426 90537 94494 203.6 790.0 Expl 40 91166 94954 200.2 280.0 Expl 428 90244 94847 197.7 1399.0 Expl 41 91086 94892 199.9 285.0 Expl 428 90244 94847 197.7 1399.0 Expl 42 91102 95033 199.8 460.0 Expl 431 90159 94638 197.7 1367.0 Expl 43 91606 94533 202.3 10.0 Expl 432 89776 94738 197.8 412.4 Expl 44 91486 94694 201.7 10.0 Expl 433 89776 94738 197.5 606.7 Expl 45 91367 94853 200.1 10.0 Expl 434 89600 94788 198.4 346.0 Expl 47 91127 95172 199.9 10.0 Expl 436 89690 95016 197.7 901.2 Expl 48 91006 95323 199.6 10.0 Expl 436 89690 95016 197.7 901.2 Expl 49 90885 95494 200.0 10.0 Expl 438 89700 95156 197.7 486.2 Expl 51 90700 95731 201.3 10.0 Expl 438 89700 95205 197.7 486.2 Expl 51 90700 95731 201.3 10.0 Expl 438 89701 95381 197.7 418.0 Expl 52 90580 95891 202.0 10.0 Expl 444 89547 94961 198.1 600.0 Expl 53 90459 96050 200.5 10.0 Expl 444 89547 94961 198.1 600.0 Expl 55 91189 95097 200.1 400.0 Expl 444 89595 95245 197.9 573.8 Expl 59 89562 94992 198.3 355.0 Expl 444 89548 94858 95149 197.9 573.8 Expl 59 89562 94992 198.3 355.0 Expl 444 89482 95254 200.1 480.0 Expl 600.0 Expl 59 89562 94992 198.3 355.0 Expl 444 89482 95254 200.1 480.0 Expl 600.0 Expl 4449 89482 95254 200.1 480.0 Expl 600.0 Expl 4449 89482 95254 200.1 480.0 Expl 600.0 Expl 600.0 Expl 600.0													
36 91016 94651 201.1 10.0 Expl 424 90658 94295 204.8 277.3 Expl 37 90985 94693 200.6 195.0 Expl 425 90525 94475 203.6 498.5 Expl 38 90871 94851 199.9 285.0 Expl 426 90537 94494 203.6 790.0 Expl 39 90806 94932 193.9 10.0 Expl 427 90355 94698 198.5 1497.8 Expl 40 91166 94954 200.2 280.0 Expl 428 90244 94847 197.7 1399.0 Expl 41 91086 94892 199.9 285.0 Expl 430 90613 95321 201.9 1400.0 Expl 42 91102 95033 199.8 460.0 Expl 431 90159 94638 197.7 1367.0 Expl 43 <td></td>													
37 90985 94693 200.6 195.0 Expl 425 90525 94475 203.6 498.5 Expl 38 90871 94851 199.9 285.0 Expl 426 90537 94494 203.6 790.0 Expl 39 90806 94932 193.9 10.0 Expl 427 90355 94698 198.5 1497.8 Expl 40 91166 94954 200.2 280.0 Expl 428 90244 94847 197.7 1399.0 Expl 41 91086 94892 199.9 285.0 Expl 430 90613 95321 201.9 1400.0 Expl 42 91102 95033 199.8 460.0 Expl 431 90159 94638 197.7 1367.0 Expl 43 91606 94533 202.3 10.0 Expl 433 89776 94738 197.8 412.4 Expl 44 <td></td> <td></td> <td></td> <td></td> <td></td> <td>Expl</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						Expl							
38 90871 94851 199.9 285.0 Expl 426 90537 94494 203.6 790.0 Expl 39 90806 94932 193.9 10.0 Expl 427 90355 94698 198.5 1497.8 Expl 40 91166 94954 200.2 280.0 Expl 428 90244 94847 197.7 1399.0 Expl 41 91086 94892 199.9 285.0 Expl 430 90613 95231 201.9 1400.0 Expl 42 91102 95033 199.8 460.0 Expl 431 90159 94638 197.7 1367.0 Expl 43 91606 94533 202.3 10.0 Expl 433 89776 94738 197.8 412.4 Expl 44 91486 94694 201.7 10.0 Expl 433 89776 94937 197.5 606.7 Expl 45 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>94475</td> <td></td> <td></td> <td></td>										94475			
39 90806 94932 193.9 10.0 Expl 427 90355 94698 198.5 1497.8 Expl 40 91166 94954 200.2 280.0 Expl 428 90244 94847 197.7 1399.0 Expl 41 91086 94892 199.9 285.0 Expl 430 90613 95321 201.9 1400.0 Expl 42 91102 95033 199.8 460.0 Expl 431 90159 94638 197.7 1367.0 Expl 43 91606 94533 202.3 10.0 Expl 432 89776 94738 197.8 412.4 Expl 44 91486 94694 201.7 10.0 Expl 433 89776 94937 197.5 606.7 Expl 45 91367 94853 200.1 10.0 Expl 434 89600 94788 198.4 346.0 Expl 47													
40 91166 94954 200.2 280.0 Expl 428 90244 94847 197.7 1399.0 Expl 41 91086 94892 199.9 285.0 Expl 430 90613 95321 201.9 1400.0 Expl 42 91102 95033 199.8 460.0 Expl 431 90159 94638 197.7 1367.0 Expl 43 91606 94533 202.3 10.0 Expl 432 89776 94738 197.8 412.4 Expl 44 91486 94694 201.7 10.0 Expl 433 89776 94937 197.5 606.7 Expl 45 91367 94853 200.1 10.0 Expl 434 89600 94788 198.4 346.0 Expl 46 91246 95014 200.4 10.0 Expl 435 89678 94768 198.0 398.5 Expl 47													
41 91086 94892 199.9 285.0 Expl 430 90613 95321 201.9 1400.0 Expl 42 91102 95033 199.8 460.0 Expl 431 90159 94638 197.7 1367.0 Expl 43 91606 94533 202.3 10.0 Expl 432 89776 94738 197.8 412.4 Expl 44 91486 94694 201.7 10.0 Expl 433 89776 94937 197.5 606.7 Expl 45 91367 94853 200.1 10.0 Expl 434 89600 94788 198.4 346.0 Expl 46 91246 95014 200.4 10.0 Expl 435 89678 94768 198.0 398.5 Expl 47 91127 95172 199.9 10.0 Expl 436 89690 95016 197.7 487.1 Expl 48		91166	94954										
42 91102 95033 199.8 460.0 Expl 431 90159 94638 197.7 1367.0 Expl 43 91606 94533 202.3 10.0 Expl 432 89776 94738 197.8 412.4 Expl 44 91486 94694 201.7 10.0 Expl 433 89776 94937 197.5 606.7 Expl 45 91367 94853 200.1 10.0 Expl 434 89600 94788 198.4 346.0 Expl 46 91246 95014 200.4 10.0 Expl 435 89678 94768 198.0 398.5 Expl 47 91127 95172 199.9 10.0 Expl 436 89690 95016 197.7 901.2 Expl 48 91006 95323 199.6 10.0 Expl 437 89700 95166 197.7 486.2 Expl 51				199.9		Expl							
43 91606 94533 202.3 10.0 Expl 432 89776 94738 197.8 412.4 Expl 44 91486 94694 201.7 10.0 Expl 433 89776 94937 197.5 606.7 Expl 45 91367 94853 200.1 10.0 Expl 434 89600 94788 198.4 346.0 Expl 46 91246 95014 200.4 10.0 Expl 435 89678 94768 198.0 398.5 Expl 47 91127 95172 199.9 10.0 Expl 436 89690 95016 197.7 901.2 Expl 48 91006 95323 199.6 10.0 Expl 437 89700 95156 197.7 487.1 Expl 49 90885 95494 200.0 10.0 Expl 438 89700 95205 197.7 486.2 Expl 51						Expl							
44 91486 94694 201.7 10.0 Expl 433 89776 94937 197.5 606.7 Expl 45 91367 94853 200.1 10.0 Expl 434 89600 94788 198.4 346.0 Expl 46 91246 95014 200.4 10.0 Expl 435 89678 94768 198.0 398.5 Expl 47 91127 95172 199.9 10.0 Expl 436 89690 95016 197.7 901.2 Expl 48 91006 95323 199.6 10.0 Expl 437 89700 95156 197.7 487.1 Expl 49 90885 95494 200.0 10.0 Expl 438 89700 95205 197.7 486.2 Expl 51 90700 95731 201.3 10.0 Expl 441 89547 94961 198.1 600.0 Expl 52						Expl							
45 91367 94853 200.1 10.0 Expl 434 89600 94788 198.4 346.0 Expl 46 91246 95014 200.4 10.0 Expl 435 89678 94768 198.0 398.5 Expl 47 91127 95172 199.9 10.0 Expl 436 89690 95016 197.7 901.2 Expl 48 91006 95323 199.6 10.0 Expl 437 89700 95156 197.7 487.1 Expl 49 90885 95494 200.0 10.0 Expl 438 89700 95205 197.7 486.2 Expl 51 90700 95731 201.3 10.0 Expl 439 89701 95381 197.7 418.0 Expl 52 90580 95891 202.0 10.0 Expl 441 89547 94961 198.1 600.0 Expl 53													
46 91246 95014 200.4 10.0 Expl 435 89678 94768 198.0 398.5 Expl 47 91127 95172 199.9 10.0 Expl 436 89690 95016 197.7 901.2 Expl 48 91006 95323 199.6 10.0 Expl 437 89700 95156 197.7 487.1 Expl 49 90885 95494 200.0 10.0 Expl 438 89700 95205 197.7 486.2 Expl 51 90700 95731 201.3 10.0 Expl 439 89701 95381 197.7 418.0 Expl 52 90580 95891 202.0 10.0 Expl 441 89547 94961 198.1 600.0 Expl 53 90459 96050 200.5 10.0 Expl 442 89577 95062 198.0 494.9 Expl 54													
47 91127 95172 199.9 10.0 Expl 436 89690 95016 197.7 901.2 Expl 48 91006 95323 199.6 10.0 Expl 437 89700 95156 197.7 487.1 Expl 49 90885 95494 200.0 10.0 Expl 438 89700 95205 197.7 486.2 Expl 51 90700 95731 201.3 10.0 Expl 439 89701 95381 197.7 418.0 Expl 52 90580 95891 202.0 10.0 Expl 441 89547 94961 198.1 600.0 Expl 53 90459 96050 200.5 10.0 Expl 442 89577 95062 198.0 494.9 Expl 54 91106 94534 202.7 10.0 Expl 443 89589 95149 197.9 487.0 Expl 55	46		95014					435			198.0		
48 91006 95323 199.6 10.0 Expl 437 89700 95156 197.7 487.1 Expl 49 90885 95494 200.0 10.0 Expl 438 89700 95205 197.7 486.2 Expl 51 90700 95731 201.3 10.0 Expl 439 89701 95381 197.7 418.0 Expl 52 90580 95891 202.0 10.0 Expl 441 89547 94961 198.1 600.0 Expl 53 90459 96050 200.5 10.0 Expl 442 89577 95062 198.0 494.9 Expl 54 91106 94534 202.7 10.0 Expl 443 89589 95149 197.9 487.0 Expl 55 91189 95097 200.1 400.0 Expl 444 89595 95245 197.9 573.8 Expl 57													Expl
49 90885 95494 200.0 10.0 Expl 438 89700 95205 197.7 486.2 Expl 51 90700 95731 201.3 10.0 Expl 439 89701 95381 197.7 418.0 Expl 52 90580 95891 202.0 10.0 Expl 441 89547 94961 198.1 600.0 Expl 53 90459 96050 200.5 10.0 Expl 442 89577 95062 198.0 494.9 Expl 54 91106 94534 202.7 10.0 Expl 443 89589 95149 197.9 487.0 Expl 55 91189 95097 200.1 400.0 Expl 444 89595 95245 197.9 573.8 Expl 57 91146 94813 199.9 10.0 Expl 445 89607 95365 198.0 548.8 Expl 58	48												
51 90700 95731 201.3 10.0 Expl 439 89701 95381 197.7 418.0 Expl 52 90580 95891 202.0 10.0 Expl 441 89547 94961 198.1 600.0 Expl 53 90459 96050 200.5 10.0 Expl 442 89577 95062 198.0 494.9 Expl 54 91106 94534 202.7 10.0 Expl 443 89589 95149 197.9 487.0 Expl 55 91189 95097 200.1 400.0 Expl 444 89595 95245 197.9 573.8 Expl 57 91146 94813 199.9 10.0 Expl 445 89607 95365 198.0 548.8 Expl 58 89706 95291 197.5 235.0 Expl 446 89368 94856 201.1 232.1 Expl 59								438					Expl
52 90580 95891 202.0 10.0 Expl 441 89547 94961 198.1 600.0 Expl 53 90459 96050 200.5 10.0 Expl 442 89577 95062 198.0 494.9 Expl 54 91106 94534 202.7 10.0 Expl 443 89589 95149 197.9 487.0 Expl 55 91189 95097 200.1 400.0 Expl 444 89595 95245 197.9 573.8 Expl 57 91146 94813 199.9 10.0 Expl 445 89607 95365 198.0 548.8 Expl 58 89706 95291 197.5 235.0 Expl 446 89368 94856 201.1 232.1 Expl 59 89562 94992 198.3 355.0 Expl 447 89419 94937 200.5 304.2 Expl 60		90700		201.3	10.0					95381	197.7		
53 90459 96050 200.5 10.0 Expl 442 89577 95062 198.0 494.9 Expl 54 91106 94534 202.7 10.0 Expl 443 89589 95149 197.9 487.0 Expl 55 91189 95097 200.1 400.0 Expl 444 89595 95245 197.9 573.8 Expl 57 91146 94813 199.9 10.0 Expl 445 89607 95365 198.0 548.8 Expl 58 89706 95291 197.5 235.0 Expl 446 89368 94856 201.1 232.1 Expl 59 89562 94992 198.3 355.0 Expl 447 89419 94937 200.5 304.2 Expl 60 89591 95090 198.0 275.0 Expl 448 89454 95158 199.5 449.5 Expl 62										94961			
54 91106 94534 202.7 10.0 Expl 443 89589 95149 197.9 487.0 Expl 55 91189 95097 200.1 400.0 Expl 444 89595 95245 197.9 573.8 Expl 57 91146 94813 199.9 10.0 Expl 445 89607 95365 198.0 548.8 Expl 58 89706 95291 197.5 235.0 Expl 446 89368 94856 201.1 232.1 Expl 59 89562 94992 198.3 355.0 Expl 447 89419 94937 200.5 304.2 Expl 60 89591 95090 198.0 275.0 Expl 448 89454 95158 199.5 449.5 Expl 62 90695 94412 204.0 10.0 Expl 449 89482 95254 200.1 480.0 Expl								442					
55 91189 95097 200.1 400.0 Expl 444 89595 95245 197.9 573.8 Expl 57 91146 94813 199.9 10.0 Expl 445 89607 95365 198.0 548.8 Expl 58 89706 95291 197.5 235.0 Expl 446 89368 94856 201.1 232.1 Expl 59 89562 94992 198.3 355.0 Expl 447 89419 94937 200.5 304.2 Expl 60 89591 95090 198.0 275.0 Expl 448 89454 95158 199.5 449.5 Expl 62 90695 94412 204.0 10.0 Expl 449 89482 95254 200.1 480.0 Expl								443					
57 91146 94813 199.9 10.0 Expl 445 89607 95365 198.0 548.8 Expl 58 89706 95291 197.5 235.0 Expl 446 89368 94856 201.1 232.1 Expl 59 89562 94992 198.3 355.0 Expl 447 89419 94937 200.5 304.2 Expl 60 89591 95090 198.0 275.0 Expl 448 89454 95158 199.5 449.5 Expl 62 90695 94412 204.0 10.0 Expl 449 89482 95254 200.1 480.0 Expl	55	91189	95097		400.0			444	89595	95245	197.9	573.8	
58 89706 95291 197.5 235.0 Expl 446 89368 94856 201.1 232.1 Expl 59 89562 94992 198.3 355.0 Expl 447 89419 94937 200.5 304.2 Expl 60 89591 95090 198.0 275.0 Expl 448 89454 95158 199.5 449.5 Expl 62 90695 94412 204.0 10.0 Expl 449 89482 95254 200.1 480.0 Expl			94813	199.9	10.0			445			198.0		
59 89562 94992 198.3 355.0 Expl 447 89419 94937 200.5 304.2 Expl 60 89591 95090 198.0 275.0 Expl 448 89454 95158 199.5 449.5 Expl 62 90695 94412 204.0 10.0 Expl 449 89482 95254 200.1 480.0 Expl	58							446					
60 89591 95090 198.0 275.0 Expl 448 89454 95158 199.5 449.5 Expl 62 90695 94412 204.0 10.0 Expl 449 89482 95254 200.1 480.0 Expl													
62 90695 94412 204.0 10.0 Expl 449 89482 95254 200.1 480.0 Expl													
								449					
65 88998 95383 201.1 10.0 Expl 451 89334 95186 201.3 313.0 Expl													
66 88927 95454 201.2 10.0 Expl 452 89053 94949 200.8 481.6 Expl	66							452					
67 88856 95521 201.3 180.0 Expl 453 89133 95275 201.1 299.0 Expl													

		_	Γable 2:	Historica	al Drill Holes	Coordin	ates. Fle	evation.	Depth		
Hole	North	East	Elev	Max	Hole	Hole	North	East	Élev	Max	Hole
			collar	Depth	Type				collar	Depth	Туре
70 71	91809 91688	94934 95094	201.6	10.0 10.0	Expl Expl	457 458	88939 88977	95327 95523	201.4	701.0 754.0	Expl Expl
72	91560	95254	201.5	10.0	Expl	459	88831	95315	201.4	710.0	Expl
73	91448	95416	201.6	10.0	Expl	460	88847	95414	200.8	709.8	Expl
74	91328	95575	202.4	10.0	Expl	461	88868	95517	201.2	703.6	Expl
83	91405	94136	203.3	10.0	Expl	462	88884	95612	201.4	500.7	Expl
90	91285 91327	94295 93571	203.7	10.0 10.0	Expl Expl	463 470	88901 88535	95706 95373	201.3	558.4 996.5	Expl Expl
91	91086	93898	204.2	10.0	Expl	472	88587	95670	200.9	868.8	Expl
92	90968	94055	204.9	10.0	Expl	473	88642	95961	200.7	796.5	Expl
93	90847	94217	204.8	10.0	Expl	474	88463	95556	201.0	1600.0	Expl
97	90765	93652	201.4	10.0	Expl	476	88501	95751	200.6	856.5	Expl
98 99	90645 90525	93812 93973	204.4 206.6	10.0 10.0	Expl Expl	478 479	88537 88572	95951 96148	200.3	407.8 683.8	Expl Expl
100	90404	94132	205.2	10.0	Expl	480	89777	95144	197.0	567.5	Expl
101	90285	94293	204.3	10.0	Expl	481	89779	95344	197.5	665.0	Expl
102	90166	94452	201.9	145.0	Expl	482	90302	94444	202.9	890.5	Expl
105	91216	95054	200.2	275.0	Expl	483	88817	95795	201.1	840.0	Expl
106 107	91110 90075	94853 94573	199.9 198.8	320.0 10.0	Expl Expl	484 485	89471 89486	94966 95013	197.8 198.5	540.0 750.0	Expl Expl
107	91063	94912	199.9	245.0	Expl	486	89500	95013	196.5	440.0	Expl
110	90342	94206	205.1	10.0	Expl	487	89515	95109	197.1	460.0	Expl
111	91018	94158	205.1	10.0	Expl	488	89528	95157	197.1	446.1	Expl
112	91246	94015	204.2	10.0	Expl	489	89543	95205	198.1	500.0	Expl
113 115	90997 90084	95012 93891	199.7 206.0	10.0 10.0	Expl Expl	490 491	89546 89545	95254 95308	198.1 197.9	496.2 484.0	Expl Expl
129	88788	95594	201.3	10.0	Expl	492	89559	95402	201.2	453.1	Expl
134	91507	95884	201.2	10.0	Expl	493	89553	95352	198.9	600.0	Expl
135	91749	95015	201.6	10.0	Expl	494	89457	94918	198.7	450.0	Expl
136	90998	94676	200.7	170.0	Expl	495	89474	94743	198.8	359.0	Expl
137 138	91810 90896	95257 94468	201.5	10.0 510.0	Expl Expl	496 497	89609 88726	95450 95311	200.8	396.0 1018.1	Expl Expl
139	90509	94331	214.5	10.0	Expl	498	88550	95472	201.2	900.0	Expl
140	91046	94612	201.1	220.0	Expl	499	88627	95865	201.1	753.5	Expl
141	91134	94995	199.8	361.9	Expl	965	88728	93614	204.3	10.0	Expl
142 143	91024 91073	94974 95073	199.8 199.8	548.3 610.0	Expl Expl	966 967	88696 88666	94113 94612	203.1	10.0 10.0	Expl Expl
149	89427	95073	200.5	330.0	Expl	968	88635	95111	200.8	10.0	Expl
151	90700	94752	201.5	780.0	Expl	969	88602	95611	201.4	10.0	Expl
153	89633	94817	198.1	665.0	Expl	1128	88590	95813	201.0	10.0	Expl
154	89682	94898	197.9	640.0	Expl	1130	88615	95412	201.5	10.0	Expl
155	89697	95100	197.7	280.0	Expl	1241	89340	95354	201.0	320.0 350.0	Expl
156 158	91224 90526	95219 94636	199.8 202.6	410.0 1120.0	Expl Expl	1245 1761	89507 89704	95398 95242	201.1 197.7	360.0	Expl Expl
159	90804	94943	199.8	760.0	Expl	1762	89706	95316	197.7	350.0	Expl
160	90578	94566	203.0	505.0	Expl	1764	89323	95085	201.2	170.0	Expl
164	91233	95130	199.8	310.0	Expl	1765	89901	95284	197.5	310.0	Expl
166 168	91254 89494	95173 94782	199.8 198.8	190.0 840.0	Expl Expl	1766 11a	89875 90782	95331 94631	197.5 202.2	305.0 540.0	Expl Expl
169	90634	94493	203.8	754.0	Expl	12a	90762	94534	202.2	580.0	Expl
172	90951	94914	199.9	551.8	Expl	233Г	90566	94279	204.5	10.0	Hydrogeo
174	90843	94720	201.0	555.0	Expl	319∏	89531	94908	198.3	10.0	Expl
175	91353	95199	201.3	165.0	Geotech	324Π	89706	95428	198.0	10.0	Expl
178 180	89882 91284	93358 95294	204.4	10.0 430.0	Geotech Expl	335A 339K	90669 88194	95117 93081	198.5 203.9	1153.0 10.0	Expl Geotech
181	90905	94633	201.1	327.2	Expl	340K	90481	93702	203.9	10.0	Geotech
182	91008	94835	200.0	409.0	Expl	341K	88414	93848	203.1	10.0	Geotech
183	89883	93557	206.3	10.0	Geotech	342K	89025	94855	201.0	10.0	Geotech
184	89883	93957	205.9	10.0	Geotech	343K	88957	94648	201.4	10.0	Geotech
185 186	89882 89885	94157 94356	204.4	10.0 10.0	Geotech Geotech	344K 345K	88902 88849	94471 94282	201.3	10.0 10.0	Geotech Geotech
187	89885	94557	201.5	155.0	Geotech	346K	88281	92354	203.0	10.0	Geotech
188	89888	94755	201.0	840.0	Expl	347K	88737	93898	204.0	10.0	Geotech
190	89889	95056	200.9	700.0	Expl	348K	91316	94593	204.8	10.0	Geotech
192	88762	95498	201.6	750.0	Expl	349K	88469	91869	204.4	10.0	Geotech
193 195	89883 88797	93757 95696	206.6	10.0 530.0	Geotech Expl	350K 351K	88699 88905	92671 93401	203.2	10.0	Geotech Geotech
190	00191	30030	201.3	550.0	Lλþi	JUL	00303	33401	203.4	10.0	Geolecii

Hole			-	Γable 2:	Historica	al Drill Hole	s: Coordin	ates. Ele	evation.	Depth		
1988 98985 98994 2006 0100 Cept 1988 19895 98981 193390 2014 1000 Hydrogeo 200 88881 33944 2044 2040 204	Hole	North		Elev	Max	Hole				Élev		
200 9986 93154 204.1 10.0 Geotech 353K 89348 93342 204.3 10.0 Geotech 202 99966 94769 200.2 360.0 Expl 356K 89466 93726 205.7 10.0 Geotech 202 99968 494800 200.5 840.0 Expl 356K 89466 93726 205.7 10.0 Geotech 204 90693 94980 200.2 874.0 Expl 357K 89864 94104 203.8 10.0 Geotech 206 90693 94983 201.2 978.5 Expl 358K 89701 94480 201.3 10.0 Geotech 206 90777 94314 204.2 10.0 Expl 359K 90226 93529 204.9 10.0 Geotech 206 90777 94314 204.2 10.0 Expl 359K 90226 93529 204.9 10.0 Geotech 208 90361 94370 204.1 790.0 Expl 369K 90236 93529 204.9 10.0 Geotech 208 90361 94370 204.1 790.0 Expl 369K 90236 93529 204.9 10.0 Geotech 208 90361 94470 40481 200.9 3791. Expl 369K 90220 93990 206.0 10.0 Geotech 210 90424 94774 1988 1390.0 Expl 369K 90220 93990 206.0 10.0 Geotech 211 89104 95339 201.2 500.0 Expl 369K 90220 93990 206.0 10.0 Geotech 212 89140 99339 201.2 500.0 Expl 369K 90230 93990 206.0 10.0 Geotech 224 90979 94874 199.8 470.0 Expl 369K 91659 94147 204.7 10.0 Geotech 224 90979 94874 199.8 470.0 Expl 366K 91246 94342 202.0 10.0 Geotech 224 90979 94874 199.8 470.0 Expl 366K 91246 94342 202.0 10.0 Geotech 224 90579 94874 199.8 470.0 Expl 366K 91246 94394 202.0 10.0 Geotech 228 90424 95281 199.8 10.0 Geotech 366K 92133 94229 20.1 10.0 Geotech 228 90424 95281 199.8 10.0 Geotech 366K 92133 94229 20.1 10.0 Geotech 232 890424 95281 199.8 10.0 Geotech 376K 99907 95877 20.0 10.0 Geotech 376K 99907 95877 20.0 10.0 Geotech 376K 99907 94874 10.0 Geotech 376K 99907 94874 10.0 Geotech 376K 99907 94874 10.0 Geotech 376K												
201 91055 94769 200.2 360.0 Expl 354K 89616 93407 204.8 10.0 Geotech 203 90784 94800 200.5 840.0 Expl 355K 89466 93726 205.7 10.0 Geotech 203 90784 94800 200.5 840.0 Expl 357K 89866 94104 203.8 10.0 Geotech 205 96629 94836 201.2 979.5 Expl 358K 89701 94480 201.3 10.0 Geotech 205 96629 94836 201.2 979.5 Expl 358K 89701 94480 201.3 10.0 Geotech 207 90479 94370 204.1 790.0 Expl 360K 90130 93762 206.0 10.0 Geotech 207 90479 94370 204.1 790.0 Expl 360K 90130 93762 206.0 10.0 Geotech 207 90479 94370 204.1 790.0 Expl 360K 90130 93762 206.0 10.0 Geotech 207 90479 94370 204.1 790.0 Expl 360K 90130 93762 206.0 10.0 Geotech 207 90424 94774 198.8 1390.0 Expl 362K 90230 93900 206.0 10.0 Geotech 207 94480 99339 201.1 500.0 Expl 363K 90093 93900 206.0 10.0 Geotech 208 94464 99339 201.3 500.0 Expl 368K 90593 94139 205.1 10.0 Geotech 202.3 91104 94706 200.4 630.0 Expl 366K 91646 94324 202.4 10.0 Geotech 223 90165 95687 94866 199.3 1050.0 Expl 366K 91646 94324 202.4 10.0 Geotech 226 90537 94956 199.3 1050.0 Expl 366K 91646 94324 202.4 10.0 Geotech 226 90537 94956 199.3 1050.0 Expl 366K 92166 93498 202.0 10.0 Geotech 226 90537 94956 199.3 1050.0 Expl 366K 92164 94292 201.0 0.0 Geotech 226 90537 94956 199.3 1050.0 Expl 366K 92164 9429 202.0 10.0 Geotech 226 90537 94956 199.3 1050.0 Geotech 376K 91939 95878 200.9 10.0 Geotech 226 90537 94956 9496 202.0 10.0 Geotech 226 96537 94464 94542 202.3 10.0 Geotech 376K 94369 9422 10.0 Geotech 227 94876 94888 9488 9488 9488 9488 9488 9488 9488 9488 9488 9488 9488 9488 9488												
2049 90693 94919 200.2 874.0 Expl 357K 89846 84303 203.0 10.0 Geotech 206 90771 94314 204.2 10.0 Expl 359K 89701 94480 201.3 10.0 Geotech 207 9479 94370 204.1 790.0 Expl 359K 90226 93529 204.9 10.0 Geotech 208 90361 94530 202.1 1057.7 Expl 369K 90130 39716 206.0 10.0 Geotech 208 90361 94530 202.1 1057.7 Expl 361K 90347 93590 206.0 10.0 Geotech 208 90361 94530 202.1 1057.7 Expl 361K 90347 93590 206.0 10.0 Geotech 201 90494 94774 1948 1390.0 Expl 362K 90220 93990 206.0 10.0 Geotech 211 89104 95142 200.9 3791.1 Expl 362K 90220 93990 206.0 10.0 Geotech 218 89727 95301 201.3 150.0 Expl 363K 90033 94147 204.7 10.0 Geotech 218 88727 95301 201.3 150.0 Expl 365K 91635 94147 202.1 10.0 Geotech 224 90679 94674 199.8 470.0 Expl 365K 91636 94139 205.1 10.0 Geotech 224 90679 94674 199.8 470.0 Expl 365K 91636 94392 202.0 10.0 Geotech 226 90537 94966 193.3 1050.0 Expl 366K 92126 95496 202.0 10.0 Geotech 228 90424 95221 199.8 10.0 Geotech 366K 92138 94529 201.8 10.0 Geotech 232 90456 95610 202.6 10.0 Geotech 366K 92138 9353 9418 203.2 10.0 Geotech 232 90456 95610 202.6 10.0 Geotech 370K 90907 95878 20.9 10.0 Geotech 232 80457 94166 203.8 10.0 Geotech 370K 90907 95878 20.9 10.0 Geotech 232 80945 93535 94818 199.7 10.0 Geotech 372K 90550 95618 201.1 10.0 Geotech 238 80353 94818 199.7 10.0 Geotech 376K 99907 95878 20.9 10.0 Geotech 238 80353 94818 199.7 10.0 Geotech 376K 99907 95878 20.1 10.0 Geotech 238 80353 9418 930 20.2 10.0 Geotech 376K 99908 95655 201.1 10.0 Geotech 248 88514 94149 95833 201.1 10.0 Geotech 37		90966		201.6		Expl						
206 90779 94314 2042 10.0 Expl 358K 89701 94480 201.3 10.0 Geotech 207 90479 94370 204.1 790.0 Expl 369K 90226 36529 204.9 10.0 Geotech 207 90479 94370 204.1 790.0 Expl 360K 90130 39376 206.0 10.0 Geotech 208 90361 94530 202.1 1057.7 Expl 360K 90130 93716 206.0 10.0 Geotech 210 90424 94774 198.8 1390.0 Expl 362K 90220 33991 206.0 10.0 Geotech 211 83104 95142 200.9 3791 Expl 362K 90220 33990 206.0 10.0 Geotech 212 83140 99339 201.2 500.0 Expl 363K 90093 94147 204.7 10.0 Geotech 212 83140 99339 201.2 500.0 Expl 363K 90093 94147 204.7 10.0 Geotech 223 38104 94705 200.4 630.0 Expl 365K 94645 94324 202.4 10.0 Geotech 224 90379 94874 9598 4790 500.0 Expl 365K 91645 94324 202.4 10.0 Geotech 226 90537 94856 199.3 1055.0 Expl 365K 91645 94384 202.0 10.0 Geotech 226 90537 94956 199.3 1055.0 Expl 367K 91890 95817 202.0 10.0 Geotech 228 90442 95281 199.8 4700.0 Expl 367K 91890 95817 202.0 10.0 Geotech 238 8357 94362 202.6 10.0 Geotech 368K 92129 34229 201.8 10.0 Geotech 238 83575 94146 203.8 10.0 Geotech 370K 90907 8578 200.9 10.0 Geotech 238 83575 94146 203.8 10.0 Geotech 372K 90367 85517 202.5 10.0 Geotech 237 83213 94338 202.5 10.0 Geotech 372K 90367 85517 202.5 10.0 Geotech 372K 90367 85517 202.5 10.0 Geotech 239 83535 94818 931.3 202.3 10.0 Geotech 372K 90367 85517 202.5 10.0 Geotech 238 83535 9418 937.3 201.3 10.0 Geotech 372K 90367 85517 202.5 10.0 Geotech 238 83535 9418 9308 202.0 10.0 Geotech 372K 90367 85618 201.1 10.0 Geotech 244 88514 94120 202.3 10.0 Geotech 373K 90555 201.1 10.0 Geotech 248 88												
207 9479 94370 2041 799.0 Expl 359K 90226 33529 204.9 10.0 Geotech 208 90361 94502 2021 1057.7 Expl 361K 90347 39850 206.0 10.0 Geotech 208 90361 94502 2021 1057.7 Expl 361K 90347 39850 206.0 10.0 Geotech 208 94774 1988 1399.0 Expl 362K 90220 33990 206.0 10.0 Geotech 212 89144 99339 2012 500.0 Expl 362K 90220 33990 206.0 10.0 Geotech 218 88727 95301 201.3 150.0 Expl 363K 90093 34147 204.7 10.0 Geotech 218 88727 95301 201.3 150.0 Expl 366K 9685 94139 205.1 10.0 Geotech 224 90079 94874 199.8 470.0 Expl 366K 92126 54324 202.4 10.0 Geotech 226 90537 94956 199.3 1050.0 Expl 366K 92126 54324 202.4 10.0 Geotech 226 90537 94956 199.3 1050.0 Expl 366K 92126 54354 202.0 10.0 Geotech 228 90424 95281 199.8 10.0 Geotech 368K 92136 54354 202.0 10.0 Geotech 232 90456 95367 201.3 10.0 Geotech 368K 92136 54354 202.0 10.0 Geotech 232 90456 95367 94146 203.8 10.0 Geotech 370K 90907 95878 200.9 10.0 Geotech 237 99213 94328 202.9 10.0 Geotech 370K 90907 95878 200.9 10.0 Geotech 237 99213 94338 202.5 10.0 Geotech 373K 90555 96187 201.0 10.0 Geotech 237 99213 94338 202.5 10.0 Geotech 373K 90555 96187 201.0 10.0 Geotech 238 93933 94818 199.7 10.0 Geotech 373K 90555 96187 201.0 10.0 Geotech 248 88514 94120 202.3 10.0 Geotech 373K 90555 96187 201.0 10.0 Geotech 248 88514 94120 202.3 10.0 Geotech 373K 90555 9617 10.0 10.0 Geotech 248 88550 94317 201.3 10.0 Geotech 373K 90985 94683 200.4 10.0 Geotech 258 88691 9408												
207 90479 94370 204.1 790.0 Expl 3601K 90347 39350 206.0 10.0 Geotech												
2008 90341 94503 202.1 1057.7 Expl 3611K 90347 93850 206.0 10.0 Geotech 211 89104 98142 200.9 379.1 Expl 3621K 90220 33990 206.0 10.0 Geotech 212 89104 98134 201.2 500.0 Expl 3631K 90039 304147 204.7 10.0 Geotech 218 88727 95301 201.3 150.0 Expl 3631K 90039 34147 204.7 10.0 Geotech 218 89727 95301 201.3 150.0 Expl 3641K 90659 94139 205.1 10.0 Geotech 224 90079 94174 199.8 470.0 Expl 366K 96164 94242 202.4 10.0 Geotech 224 90079 94174 199.8 470.0 Expl 366K 96164 94242 202.4 10.0 Geotech 224 90079 94174 199.8 470.0 Expl 366K 96164 94242 202.4 10.0 Geotech 226 90537 94956 199.3 1050.0 Expl 366K 92126 95466 202.0 10.0 Geotech 228 90424 95281 199.8 10.0 Geotech 368K 92135 94229 201.8 10.0 Geotech 238 90424 95281 199.8 10.0 Geotech 368K 92135 94229 201.8 10.0 Geotech 238 89445 93762 204.2 10.0 Geotech 370K 90907 95378 200.9 10.0 Geotech 238 89157 94146 203.8 10.0 Geotech 370K 90907 95378 200.9 10.0 Geotech 238 89287 94388 202.5 10.0 Geotech 373K 90957 95578 200.9 10.0 Geotech 238 89297 94388 202.5 10.0 Geotech 373K 90350 95577 202.5 10.0 Geotech 238 89297 94388 202.5 10.0 Geotech 373K 90350 95577 202.5 10.0 Geotech 247 89514 94120 202.3 10.0 Geotech 373K 90350 95577 202.5 10.0 Geotech 247 8855 94219 202.0 10.0 Geotech 375K 92293 95903 201.0 10.0 Geotech 247 8855 94219 202.0 10.0 Geotech 375K 9995 94584 201.1 10.0 Hydrogeo 248 88623 94118 201.2 10.0 Geotech 38517 94958 94959 202.1 10.0 Geotech 38517 94958 94959 94958 201.2 10.0 Geotech 38517 94958 94959 94958 201.1 10.0 Hydrogeo 258 89897 95097 201.1 10.0 Ge												
211 89104 95142 200.9 379.1 Expl 362K 90220 39900 206.0 10.0 Geotech 218 88727 95301 201.3 150.0 Expl 363K 900639 94147 204.7 10.0 Geotech 228 89740 49705 200.4 630.0 Expl 365K 91645 94324 202.4 10.0 Geotech 224 90979 94874 199.8 470.0 Expl 365K 91645 94324 202.4 10.0 Geotech 226 90373 94956 199.3 1050.0 Expl 365K 91645 94324 202.4 10.0 Geotech 228 90424 95281 199.8 10.0 Geotech 367K 91890 95817 202.0 10.0 Geotech 228 90424 95281 199.8 10.0 Geotech 368K 92193 94229 201.8 10.0 Geotech 228 89045 93762 204.2 10.0 Geotech 370K 90907 95872 201.9 10.0 Geotech 223 89045 93762 204.2 10.0 Geotech 370K 90907 95872 200.9 10.0 Geotech 223 89157 34146 203.3 10.0 Geotech 370K 90507 95873 201.0 10.0 Geotech 223 89237 94586 202.5 10.0 Geotech 370K 90507 95878 200.9 10.0 Geotech 223 89237 94586 202.9 10.0 Geotech 370K 90505 956189 201.0 10.0 Geotech 238 89237 34586 202.5 10.0 Geotech 372K 90387 96581 201.0 10.0 Geotech 238 89237 34586 202.9 10.0 Geotech 373K 90550 95617 202.5 10.0 Geotech 244 88544 94120 202.3 10.0 Geotech 374K 90318 95941 201.8 10.0 Geotech 246 88550 94317 201.8 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 246 88550 94317 201.8 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 247 88585 94317 201.8 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 258 88939 94814 201.3 10.0 Geotech 378K 92090 95666 201.7 10.0 Geotech 258 88959 94898 201.2 10.0 Geotech 386K1 91879 95368 200.6 201.7 10.0 Geotech 258 88959 94898 201.2 10.0 Geotech 386K1 91879 95388 200.6 201.0 Hydrogeo 258 88965 94317 201.2 10.0 Geotech				202.1		Expl	361K	90347				Geotech
218 89140 99339 201.2 500.0 Expl 363K 90093 94147 204.7 10.0 Geotech 223 91104 94705 200.4 630.0 Expl 364K 90669 94139 205.1 10.0 Geotech 223 91104 94705 200.4 630.0 Expl 366K 92126 94324 202.4 10.0 Geotech 226 90537 94876 198.8 470.0 Expl 366K 92126 95496 202.0 10.0 Geotech 226 90537 94856 199.8 1050.0 Expl 366K 92126 95496 202.0 10.0 Geotech 228 90424 95281 199.8 10.0 Geotech 368K 92193 94229 201.8 10.0 Geotech 232 89945 38762 204.2 10.0 Geotech 368K 92193 94229 201.8 10.0 Geotech 232 89945 38762 204.2 10.0 Geotech 3770K 90907 95878 200.9 10.0 Geotech 238 98979 94626 202.9 10.0 Geotech 377K 90955 96189 201.0 10.0 Geotech 237 89213 94229 94626 202.9 10.0 Geotech 372K 90585 96189 201.0 10.0 Geotech 238 89297 94626 202.9 10.0 Geotech 372K 90585 96187 202.5 10.0 Geotech 239 89353 94818 199.7 10.0 Geotech 374K 90318 95941 201.8 10.0 Geotech 244 88514 94120 202.3 10.0 Geotech 376K 92939 59930 201.0 10.0 Geotech 246 88550 9417 201.8 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 247 88585 94171 201.8 10.0 Geotech 376K 92099 95666 201.7 10.0 Geotech 249 88621 94711 201.2 10.0 Geotech 378K 99085 94693 200.6 200.0 Geotech 250 88895 94514 201.3 10.0 Geotech 378K 99085 94693 200.6 201.0 Geotech 250 88895 94530 201.1 10.0 Geotech 380K 9747 95386 201.1 10.0 Geotech 251 88891 95505 201.2 10.0 Geotech 380K 9747 95386 201.1 10.0 Geotech 258 88985 96530 201.2 10.0 Geotech 380K 9747 95386 201.1 10.0 Hydrogeo 258 98895 96530 201.2 10.0 Geotech 380K 9747 95386 201.1 10.0 Hydrogeo 258 98895 96530 201.2 10.0 Geotech 380												
218						Expl			93990			
223 91104 94705 200.4 630.0 Expl 366K 91212 93498 202.4 10.0 Geotech 226 90537 94876 199.8 470.0 Expl 366K 92126 95498 202.0 10.0 Geotech 228 90424 95281 199.8 10.0 Geotech 368K 92133 94229 201.8 10.0 Geotech 232 90424 95281 199.8 10.0 Geotech 369K 92245 95335 201.3 10.0 Geotech 232 89045 95601 202.6 10.0 Geotech 369K 92245 95335 201.3 10.0 Geotech 232 89045 93762 204.2 10.0 Geotech 370K 90907 98878 200.9 10.0 Geotech 237 89817 94146 203.8 10.0 Geotech 371K 90655 96189 201.0 10.0 Geotech 237 89213 94238 202.9 10.0 Geotech 371K 90655 96189 201.0 10.0 Geotech 238 89397 94626 202.9 10.0 Geotech 372K 90585 96187 202.5 10.0 Hydrogeo 238 89393 89418 199.7 10.0 Geotech 373K 90560 95617 202.5 10.0 Geotech 244 88514 95863 201.3 10.0 Geotech 376K 92393 95903 201.0 10.0 Geotech 244 88514 95863 201.3 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 246 88532 94219 202.0 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 247 88585 94517 201.8 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 247 88585 94514 201.3 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 248 88521 94711 201.2 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 248 88521 94711 201.2 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 248 88521 94711 201.2 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 248 88521 94711 201.3 10.0 Geotech 380K 91747 95965 202.4 10.0 Geotech 248 88941 201.8 201.1 10.0 Geotech 248 88941 248 2												
224 99979 94874 199.8 470.0 Expl 366K 92126 95496 202.0 10.0 Geotech 226 90424 95281 199.8 10.0 Geotech 368K 92193 94229 201.8 10.0 Geotech 230 90185 95601 202.6 10.0 Geotech 368K 92193 94229 201.8 10.0 Geotech 232 89845 93762 204.2 10.0 Geotech 370K 99907 95878 200.9 10.0 Geotech 235 89157 94146 203.8 10.0 Geotech 370K 99907 95878 201.9 10.0 Geotech 237 89213 94338 202.5 10.0 Geotech 377K 90655 96189 201.0 10.0 Geotech 237 89213 94338 202.5 10.0 Geotech 373K 90550 96189 201.1 10.0 Geotech 238 89297 94626 202.9 10.0 Geotech 373K 90550 95617 202.5 10.0 Geotech 241 89514 94520 202.3 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 244 88514 94120 202.3 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 246 88552 94317 201.8 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 246 88550 94317 201.8 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 247 88585 94514 201.3 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 248 88621 94711 201.2 10.0 Geotech 376K 91949 95737 201.7 10.0 Geotech 249 88621 94711 201.2 10.0 Geotech 376K 91948 95737 201.7 10.0 Geotech 249 88621 94711 201.2 10.0 Geotech 378K 92093 95685 201.7 10.0 Geotech 256 89847 95830 201.2 10.0 Geotech 378K 92093 95685 201.7 10.0 Geotech 256 89847 95830 202.1 10.0 Geotech 378K 92093 95685 201.7 10.0 Geotech 256 89847 95830 202.1 10.0 Geotech 380K 97047 95388 201.6 250.0 Expl 256 89849 95830 201.2 10.0 Geotech 380K 97047 95388 201.6 250.0 Expl 256 89849 95830 201.1 10.0 Geotech 380K 97047 95388 201.1 10.0 Hydrogeo 256 89847 95380 201.2 10.0 Geotech 38217												
228 90424 95281 199.8 10.0 Geotech 368K 22193 34229 201.8 10.0 Geotech 230 90185 95601 202.6 10.0 Geotech 3369K 902245 95335 201.3 10.0 Geotech 235 89157 34146 203.8 10.0 Geotech 371K 90557 96189 201.0 10.0 Geotech 237 89213 94338 202.5 10.0 Geotech 373K 90550 96187 201.5 10.0 Hydrogeo 238 89227 94266 202.9 10.0 Geotech 373K 90550 95617 202.5 10.0 Geotech 238 89227 94266 202.9 10.0 Geotech 373K 90550 95617 202.5 10.0 Geotech 241 89514 945863 201.3 10.0 Geotech 375K 92293 95903 201.0 10.0 Geotech 244 88514 94120 202.3 10.0 Geotech 375K 92293 95903 201.0 10.0 Geotech 246 88550 94514 201.8 10.0 Geotech 375K 91771 95976 202.4 10.0 Geotech 247 88585 94514 201.3 10.0 Geotech 375K 91771 95976 202.4 10.0 Geotech 249 88621 94711 201.2 10.0 Geotech 376K 910979 98666 201.7 10.0 Geotech 249 88621 94711 201.2 10.0 Geotech 376K 93098 94693 200.6 250.0 Expl 256 88666 94908 201.2 10.0 Geotech 376K 9374 93862 201.1 10.0 Geotech 326K 201.4 10.0 Geotech 256 88937 95930 202.1 10.0 Geotech 382/21 89516 95381 201.1 10.0 Hydrogeo 256 89897 95930 202.1 10.0 Geotech 382/21 89516 95381 201.1 10.0 Hydrogeo 256 89897 95930 202.1 10.0 Geotech 382/21 89516 9538 201.1 10.0 Hydrogeo 256 91445 93590 202.7 10.0 Geotech 382/21 89516 95381 201.1 10.0 Hydrogeo 256 91445 93590 202.7 10.0 Geotech 382/21 89527 95272 201.1 10.0 Hydrogeo 256 91445 93590 202.7 10.0 Geotech 386/41 91393 95097 201.1 10.0 Hydrogeo 256 91445 93590 202.7 10.0 Geotech 386/41 91393 95097 201.1 10.0 Hydrogeo 256 91445 93590 202.7 10.0 Geotech 386/41 91833 95293 201.1 10.0 Hyd					470.0							
230 90185 95601 202.6 10.0 Geotech 369K 92245 95335 201.3 10.0 Geotech 2328 89167 94146 203.8 10.0 Geotech 371K 90655 96189 201.0 10.0 Geotech 237 88213 94338 202.5 10.0 Geotech 371K 90655 96189 201.0 10.0 Geotech 237 88213 94338 202.5 10.0 Geotech 373K 90555 96187 202.5 10.0 Geotech 2398 89397 94626 202.9 10.0 Geotech 373K 90550 95617 202.5 10.0 Geotech 2398 89393 2918 201.3 10.0 Geotech 374K 90318 95941 201.8 10.0 Geotech 244 88514 95683 201.3 10.0 Geotech 375K 92293 95903 201.0 10.0 Geotech 244 88514 94120 202.3 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 246 88552 94219 202.0 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 246 88555 94514 201.8 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 247 88585 94514 201.8 10.0 Geotech 378K 92009 95656 201.7 10.0 Geotech 248 88621 94711 201.2 10.0 Geotech 378K 92009 95656 201.7 10.0 Geotech 249 88621 94711 201.2 10.0 Geotech 378K 90885 94693 200.6 250.0 Expl 250 88666 9500 201.2 10.0 Geotech 382/17 89516 85381 201.1 10.0 Hydrogeo 254 88923 96339 99.7 10.0 Geotech 382/27 89487 95274 201.1 10.0 Hydrogeo 256 89947 95930 202.1 10.0 Geotech 382/27 89487 95272 201.1 10.0 Hydrogeo 260 88985 96330 200.4 10.0 Geotech 382/27 89487 95274 201.1 10.0 Hydrogeo 260 88985 96330 200.4 10.0 Geotech 382/37 89407 95272 201.1 10.0 Hydrogeo 260 93225 94070 203.8 10.0 Geotech 386347 91839 95275 201.1 10.0 Hydrogeo 260 91325 94070 203.8 10.0 Geotech 386347 91839 95285 201.1 10.0 Hydrogeo 260 91325 94390 202.7 10.0 Geotech 386347 91839 95285 201.1 10.0 Hydrogeo 273 91839 9466 201.4												
232 89045 93762 204.2 10.0 Geotech 370K 90907 95878 201.9 10.0 Geotech 237 89213 94338 202.5 10.0 Geotech 371K 90655 9618 201.0 10.0 Geotech 237 89213 94338 202.5 10.0 Geotech 375K 90550 95617 202.5 10.0 Geotech 237 90387 96551 201.1 10.0 Hydrogeo 238 89297 94826 202.9 10.0 Geotech 375K 90550 95617 202.5 10.0 Geotech 237 238												
237 89157 94146 203.8 10.0 Geotech 371K 90655 96189 201.0 10.0 Geotech 237 89213 94338 202.5 10.0 Geotech 373K 90550 95617 201.1 10.0 Hydrogeo 238 89297 94626 202.9 10.0 Geotech 373K 90550 95617 202.5 10.0 Geotech 239 89353 94818 199.7 10.0 Geotech 375K 90381 89541 201.8 10.0 Geotech 244 89514 95863 201.3 10.0 Geotech 375K 89293 39593 201.0 10.0 Geotech 244 89514 95863 201.3 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 244 88514 94120 202.3 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 245 88532 94219 202.0 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 246 88550 94317 201.8 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 247 88565 94317 201.3 10.0 Geotech 378K 92090 95656 201.7 10.0 Geotech 247 88565 94711 201.2 10.0 Geotech 378K 92090 95656 201.7 10.0 Geotech 250 88656 94098 201.2 10.0 Geotech 378K 99085 94693 200.6 250.0 Expl 250 88656 94098 201.2 10.0 Geotech 380K 90747 95368 200.6 10.0 Hydrogeo 254 88932 96389 199.7 10.0 Geotech 382/21 89467 95272 201.1 10.0 Hydrogeo 256 89947 95930 202.1 10.0 Geotech 382/21 89467 95272 201.1 10.0 Hydrogeo 256 89947 95930 202.1 10.0 Geotech 382/21 89407 95272 201.1 10.0 Hydrogeo 268 89985 96330 200.4 10.0 Geotech 382/21 89407 95272 201.1 10.0 Hydrogeo 268 89895 96530 200.4 10.0 Geotech 385/21 91379 95097 201.1 10.0 Hydrogeo 268 89895 96530 200.7 10.0 Geotech 385/21 91379 95097 201.1 10.0 Hydrogeo 268 89895 96530 200.7 10.0 Geotech 385/21 91379 95243 201.1 10.0 Hydrogeo 268 89895 96530 200.4 10.0 Geotech 386/21 91379 95097 201.1 10.0 Hydrogeo 266 91325 94070 203												
237 89213 94338 202.5 10.0 Geotech 372 90387 99551 201.1 10.0 Hydrogeo 238 89297 94626 202.9 10.0 Geotech 373 373 90550 95617 202.5 10.0 Geotech 237 238 89353 94818 199.7 10.0 Geotech 374 90318 95941 201.8 10.0 Geotech 241 89514 98563 201.3 10.0 Geotech 376 80229 395903 201.0 10.0 Geotech 244 88514 94120 202.3 10.0 Geotech 376 80229 39597 201.8 10.0 Geotech 245 88532 94219 202.0 10.0 Geotech 376 801949 95737 201.8 10.0 Geotech 246 88550 94317 201.8 10.0 Geotech 377 80171 9576 202.4 10.0 Geotech 247 88585 94514 201.3 10.0 Geotech 378 90985 94564 201.4 10.0 Geotech 249 88621 94711 201.2 10.0 Geotech 378 90985 94693 200.6 250.0 Expl 250 88656 94908 201.2 10.0 Geotech 380 809747 95368 200.6 10.0 Geotech 251 88691 95105 201.2 10.0 Geotech 382/17 89487 95274 201.1 10.0 Hydrogeo 256 88947 95930 202.1 10.0 Geotech 382/17 89487 95272 201.1 10.0 Hydrogeo 257 88985 96330 200.9 10.0 Geotech 382/17 89487 95272 201.1 10.0 Hydrogeo 258 88995 96330 200.4 10.0 Geotech 382/17 89546 95097 201.1 10.0 Hydrogeo 260 88985 96330 200.4 10.0 Geotech 385/17 91939 95097 201.1 10.0 Hydrogeo 260 88985 96330 200.4 10.0 Geotech 385/17 91839 95937 201.1 10.0 Hydrogeo 260 83895 96330 202.7 10.0 Geotech 385/17 91339 95097 201.1 10.0 Hydrogeo 260 91325 94070 203.8 10.0 Geotech 385/17 91339 95097 201.1 10.0 Hydrogeo 260 91325 94070 203.8 10.0 Geotech 386/17 91339 95245 201.1 10.0 Hydrogeo 260 91325 94070 203.8 10.0 Geotech 386/17 91839 95245 201.1 10.0 Hydrogeo 260 91325 94070 203.8 10.0 Geotech 386/17 91839 95232 201.1 10.0 Hydrogeo 273 91690												
238 89297 94626 202.9 10.0 Geotech 373K 90550 95617 202.5 10.0 Geotech 2398 89353 94818 199.7 10.0 Geotech 374K 90318 93941 201.8 10.0 Geotech 241 89514 95863 201.3 10.0 Geotech 375K 92293 95903 201.0 10.0 Geotech 244 88514 95863 201.3 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 246 88552 94219 202.0 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 246 88553 94219 202.0 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 246 88555 94317 201.8 10.0 Geotech 378K 92009 95656 201.7 10.0 Geotech 247 88565 94514 201.3 10.0 Geotech 378K 92009 95656 201.7 10.0 Geotech 249 88621 94711 201.2 10.0 Geotech 378K 92009 95656 201.7 10.0 Geotech 249 88621 94711 201.2 10.0 Geotech 378K 90747 95368 200.6 250.0 Expl 250 88656 94908 201.2 10.0 Geotech 382/21 89477 95368 200.6 10.0 Geotech 254 88923 96389 199.7 10.0 Geotech 382/21 89467 95274 201.1 10.0 Hydrogeo 254 88923 96389 199.7 10.0 Geotech 382/21 89467 95274 201.1 10.0 Hydrogeo 257 88989 96330 200.4 10.0 Geotech 382/21 89467 95272 201.1 10.0 Hydrogeo 258 89895 96330 200.4 10.0 Geotech 382/21 89427 95274 201.1 10.0 Hydrogeo 258 89895 96330 200.4 10.0 Geotech 385/21 89427 95243 201.1 10.0 Hydrogeo 268 91325 94070 203.8 10.0 Geotech 385/21 91827 95243 201.1 10.0 Hydrogeo 268 91325 94070 203.8 10.0 Geotech 385/21 91827 95243 201.1 10.0 Hydrogeo 268 91325 94070 203.8 10.0 Geotech 385/21 91827 95243 201.1 10.0 Hydrogeo 269 92289 94616 201.7 10.0 Geotech 386/21 91833 95293 201.1 10.0 Hydrogeo 269 92289 94616 201.7 10.0 Geotech 386/21 91837 95348 201.1 10.0 Hydrogeo 269 92289 9461												
241 89514 95863 201.3 10.0 Geotech 375K 92293 95903 201.0 10.0 Geotech 244 88514 94120 202.3 10.0 Geotech 376K 91949 95737 201.8 10.0 Geotech 246 88552 94219 202.0 10.0 Geotech 377K 91771 95976 202.4 10.0 Geotech 246 88550 94317 201.8 10.0 Geotech 378K 92009 95656 201.7 10.0 Geotech 247 88585 94514 201.3 10.0 Geotech 379K 91965 94684 201.4 10.0 Geotech 249 88621 94711 201.2 10.0 Geotech 379K 91965 94693 200.6 20.0 Expl 250 88656 94908 201.2 10.0 Geotech 38271 89516 95881 201.1 10.0 Geotech 38281 88691 95105 201.2 10.0 Geotech 38271 89516 95831 201.1 10.0 Hydrogeo 254 88923 96389 199.7 10.0 Geotech 38221 89547 95272 201.1 10.0 Hydrogeo 256 89947 95390 202.1 10.0 Geotech 382218 89487 95274 201.1 10.0 Hydrogeo 258 89995 96330 200.4 10.0 Geotech 38231 89407 95272 201.1 10.0 Hydrogeo 258 89995 96330 200.4 10.0 Geotech 38231 89407 95272 201.1 10.0 Hydrogeo 268 89995 96330 200.4 10.0 Geotech 38251 89407 95272 201.1 10.0 Hydrogeo 268 91845 93590 202.1 10.0 Geotech 385371 91829 95265 201.1 10.0 Hydrogeo 265 91445 93910 203.1 10.0 Geotech 385371 91829 95265 201.1 10.0 Hydrogeo 265 91445 93910 203.1 10.0 Geotech 385371 91829 95265 201.1 10.0 Hydrogeo 267 91205 94230 204.1 10.0 Geotech 3853871 91829 95285 201.1 10.0 Hydrogeo 267 91205 94230 204.1 10.0 Geotech 386371 91833 95293 201.1 10.0 Hydrogeo 272 91929 95097 201.6 10.0 Geotech 386371 91833 95293 201.1 10.0 Hydrogeo 273 91809 95438 201.8 10.0 Geotech 386387 91833 95293 201.1 10.0 Hydrogeo 273 91929 95097 201.6 10.0 Geotech 386387 91833 95293 201.1 10.0 Hydrogeo 273 91929	238		94626		10.0	Geotech		90550		202.5		
244												
245 88532 94219 202.0 10.0 Geotech 377K 91771 95976 202.4 10.0 Geotech 246 88555 94317 201.8 10.0 Geotech 379K 91965 94564 201.4 10.0 Geotech 249 88621 94711 201.2 10.0 Geotech 378 99985 94693 200.6 10.0 Geotech 250 88656 94908 201.2 10.0 Geotech 380K 90747 95386 200.6 10.0 Geotech 251 88691 95105 201.2 10.0 Geotech 382/17 89516 95381 201.1 10.0 Hydrogeo 256 89947 95300 202.1 10.0 Geotech 382/27 89487 2520 10.0 Geotech 382/27 89487 2520 10.0 Hydrogeo 252 25255 201.1 10.0 Hydrogeo 258 89895 96330 200.9												
246 88550 94317 201.8 10.0 Geotech 378K 92009 95656 201.7 10.0 Geotech 247 88585 94514 201.3 10.0 Geotech 378 99985 94564 201.4 10.0 Geotech 250 88656 94908 201.2 10.0 Geotech 380K 90747 95368 200.6 10.0 Geotech 251 88691 95105 201.2 10.0 Geotech 382/1F 895616 95311 10.0 Hydrogeo 254 88923 95309 202.1 10.0 Geotech 382/1F 89467 95272 201.1 10.0 Hydrogeo 256 89947 95930 202.1 10.0 Geotech 382/1F 89427 201.1 10.0 Hydrogeo 258 89895 96330 202.4 10.0 Geotech 385/1F 91939 9507 201.1 10.0 Hydrogeo												
247												
250 88656 94908 201.2 10.0 Geotech 380/H 90747 95368 200.6 10.0 Geotech 251 88681 98105 201.2 10.0 Geotech 382/IT 89516 95381 201.1 10.0 Hydrogeo 256 89947 95930 202.1 10.0 Geotech 382/IT 89487 95274 201.1 10.0 Hydrogeo 257 89885 96130 200.9 10.0 Geotech 382/IT 89487 95272 201.1 10.0 Hydrogeo 257 89885 96130 200.9 10.0 Geotech 382/IT 89520 95255 201.1 10.0 Hydrogeo 260 89895 96330 200.4 10.0 Geotech 385/IT 91939 95097 201.1 10.0 Hydrogeo 263 91684 93590 202.7 10.0 Geotech 385/IT 91829 95265 201.1 10.0 Hydrogeo 265 91445 93910 203.1 10.0 Geotech 385/IT 91829 95265 201.1 10.0 Hydrogeo 266 91325 94070 203.8 10.0 Geotech 385/IT 91824 95257 201.1 10.0 Hydrogeo 266 91325 94070 203.8 10.0 Geotech 385/IT 91824 95257 201.1 10.0 Hydrogeo 267 91205 94230 204.1 10.0 Geotech 386/IT 91834 95365 201.1 10.0 Hydrogeo 269 92289 94616 201.7 10.0 Geotech 386/IT 91837 95319 201.1 10.0 Hydrogeo 272 91929 95097 201.6 10.0 Geotech 386/IT 91833 95293 201.1 10.0 Hydrogeo 272 91929 95097 201.6 10.0 Geotech 386/IT 91833 95293 201.1 10.0 Hydrogeo 273 91690 95417 202.5 10.0 Geotech 386/IT 91833 95293 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 386/IT 91833 95293 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 386/IT 91833 95293 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 403a 90958 94737 200.5 10.0 Geotech 503K 90490 94187 205.5 10.0 Geotech 503K 90490 94187 205.5 10.0 Geotech	247				10.0					201.4		Geotech
251 88691 95105 201.2 10.0 Geotech 382/IT 89516 95381 201.1 10.0 Hydrogeo 10.0 Geotech 382/IT 89487 95274 201.1 10.0 Hydrogeo 10.0 Geotech 382/IT 89487 95274 201.1 10.0 Hydrogeo 256 89895 96130 200.9 10.0 Geotech 382/IT 89497 95272 201.1 10.0 Hydrogeo 257 89895 96330 200.4 10.0 Geotech 382/IT 89522 95255 201.1 10.0 Hydrogeo 258 89895 96330 200.4 10.0 Geotech 385/IT 91939 95097 201.1 10.0 Hydrogeo 260 89895 96330 10.0 Geotech 385/IT 91839 95097 201.1 10.0 Hydrogeo 263 91684 93590 202.7 10.0 Geotech 385/IT 91829 95265 201.1 10.0 Hydrogeo 265 91445 93910 203.1 10.0 Geotech 385/IT 91829 95265 201.1 10.0 Hydrogeo 266 91325 94070 203.8 10.0 Geotech 385/IT 91843 95365 201.1 10.0 Hydrogeo 267 91205 94230 204.1 10.0 Geotech 386/IT 91843 95365 201.1 10.0 Hydrogeo 269 92289 94616 201.7 10.0 Geotech 386/IT 91843 95365 201.1 10.0 Hydrogeo 271 92049 94036 201.8 10.0 Geotech 386/IT 91837 95319 201.1 10.0 Hydrogeo 272 91929 95097 201.6 10.0 Geotech 386/IT 91833 95293 201.1 10.0 Hydrogeo 273 91690 95417 202.5 10.0 Geotech 386/IT 91831 95293 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 386/IT 91831 95293 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 403a 90958 94737 200.3 365.7 Expl 280 96538 200.6 10.0 Geotech 416a 90415 95118 198.5 1587.5 Expl 280 96538 200.6 10.0 Geotech 403a 90588 94737 200.3 365.7 Expl 289 96192 201.3 10.0 Geotech 505K 90387 93933 205.1 10.0 Geotech 285 87849 93833 205.5 10.0 Geotech 505K 90387 93933 205.5 10.0 Geotech 296 88207 95801 201.2 10.0 Geotech 505K 90387 93933 205.5 10.0 Geotech 297												
254 88923 96389 199.7 10.0 Geotech 382/2\(\text{F}\) 89487 95274 201.1 10.0 Hydrogeo 256 89947 95930 202.1 10.0 Geotech 382/3\(\text{F}\) 89487 95272 201.1 10.0 Hydrogeo 257 89895 96130 200.9 10.0 Geotech 382/3\(\text{F}\) 89487 95272 201.1 10.0 Hydrogeo 258 89895 96330 200.4 10.0 Geotech 385/3\(\text{F}\) 91939 95097 201.1 10.0 Hydrogeo 260 89895 96330 200.4 10.0 Geotech 385/3\(\text{F}\) 91827 95243 201.1 10.0 Hydrogeo 263 91684 39590 202.7 10.0 Geotech 385/3\(\text{F}\) 91827 95243 201.1 10.0 Hydrogeo 265 91445 93910 203.1 10.0 Geotech 385/3\(\text{F}\) 92079 95438 201.1 10.0 Hydrogeo 266 91325 94070 203.8 10.0 Geotech 385/3\(\text{F}\) 92079 95438 201.1 10.0 Hydrogeo 267 91205 94230 204.1 10.0 Geotech 386/3\(\text{F}\) 91824 95257 201.1 10.0 Hydrogeo 269 92289 94616 201.7 10.0 Geotech 386/3\(\text{F}\) 91837 95319 201.1 10.0 Hydrogeo 271 92049 94036 201.8 10.0 Geotech 386/3\(\text{F}\) 91837 95319 201.1 10.0 Hydrogeo 272 91929 95097 201.6 10.0 Geotech 386/3\(\text{F}\) 91833 95293 201.1 10.0 Hydrogeo 273 91690 95417 202.5 10.0 Geotech 386/3\(\text{F}\) 91833 95293 201.1 10.0 Hydrogeo 274 91570 95577 202.5 10.0 Geotech 386/3\(\text{F}\) 91833 95293 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 386/3\(\text{F}\) 91833 95293 201.1 10.0 Hydrogeo 278 91690 95417 202.5 10.0 Geotech 386/3\(\text{F}\) 91833 95293 201.1 10.0 Hydrogeo 278 91690 95417 202.5 10.0 Geotech 386/3\(\text{F}\) 91833 95293 201.1 10.0 Hydrogeo 278 91690 95417 202.5 10.0 Geotech 386/3\(\text{F}\) 91833 95293 201.1 10.0 Hydrogeo 278 91690 95417 202.5 10.0 Geotech 416a 90415 95118 198.2 1587												
256 89947 95930 202.1 10.0 Geotech 382/3Г 89407 95272 201.1 10.0 Hydrogeo 257 89895 96130 200.9 10.0 Geotech 382LIГ 89522 95255 201.1 10.0 Hydrogeo 260 89895 96330 200.4 10.0 Geotech 385/1Г 91827 95243 201.1 10.0 Hydrogeo 263 91684 93590 202.7 10.0 Geotech 385/3Г 91827 95243 201.1 10.0 Hydrogeo 265 91445 39310 203.1 10.0 Geotech 385/3Г 91827 95265 201.1 10.0 Hydrogeo 266 91325 94070 203.8 10.0 Geotech 386/1Г 91824 95257 201.1 10.0 Hydrogeo 267 91205 94230 204.1 10.0 Geotech 386/1Г 91834 95257 201.1 10.0												
257 89895 96130 200.9 10.0 Geotech 382L F 89522 95255 201.1 10.0 Hydrogeo 10.0 Geotech 385/1F 91939 95097 201.1 10.0 Hydrogeo 263 91684 93590 202.7 10.0 Geotech 385/3F 91827 95243 201.1 10.0 Hydrogeo 263 91684 93590 202.7 10.0 Geotech 385/3F 91829 95265 201.1 10.0 Hydrogeo 265 91445 93910 203.1 10.0 Geotech 385/3F 91829 95265 201.1 10.0 Hydrogeo 266 91325 94070 203.8 10.0 Geotech 385/4F 92079 95438 201.1 10.0 Hydrogeo 267 91205 94230 204.1 10.0 Geotech 385/4F 92079 95438 201.1 10.0 Hydrogeo 269 92289 94616 201.7 10.0 Geotech 386/1F 91834 95365 201.1 10.0 Hydrogeo 274 92049 94036 201.8 10.0 Geotech 386/3F 91833 95293 201.1 10.0 Hydrogeo 272 91929 9907 201.6 10.0 Geotech 386/3F 91833 95293 201.1 10.0 Hydrogeo 273 91690 95417 202.5 10.0 Geotech 386/3F 91831 95293 201.1 10.0 Hydrogeo 274 91570 95577 202.5 10.0 Geotech 386/3F 91831 95293 201.1 10.0 Expl 274 91570 95577 202.5 10.0 Geotech 386/3F 91831 95293 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 403a 90958 94737 200.3 365.7 Expl 282 90612 96859 200.3 10.0 Geotech 411a 90631 95001 199.8 1304.4 Expl 283 87778 393439 202.1 10.0 Geotech 416a 90415 95118 198.2 1587.5 Expl 282 90612 96859 200.3 10.0 Geotech 503K 80490 94187 205.1 10.0 Geotech 295 88278 96192 201.3 10.0 Geotech 503K 90490 94187 205.1 10.0 Geotech 295 88278 96195 201.3 10.0 Geotech 505K 90879 94150 205.6 10.0 Geotech 295 88279 94880 201.3 10.0 Geotech 505K 90887 94469 202.4 10.0 Geotech 297 88278 96195 201.3 10.0 Geotech 505K 90880 94469 202.4 10.0 Geotech 306 8827 95898 201.3 1020.0 Expl 515												
260 89895 96530 199.9 10.0 Geotech 385/2 91827 95243 201.1 10.0 Hydrogeo 263 91684 93590 202.7 10.0 Geotech 385/3 91829 95265 201.1 10.0 Hydrogeo 265 91445 93910 203.1 10.0 Geotech 385/3 91829 95265 201.1 10.0 Hydrogeo 266 91325 94070 203.8 10.0 Geotech 385/3 91824 95257 201.1 10.0 Hydrogeo 267 91205 94230 204.1 10.0 Geotech 3851 91824 95257 201.1 10.0 Hydrogeo 269 92289 94616 201.7 10.0 Geotech 386/1 91843 95365 201.1 10.0 Hydrogeo 271 92049 94036 201.8 10.0 Geotech 386/3 91833 95293 201.1 10.0 Hydrogeo 272 91929 95097 201.6 10.0 Geotech 386/3 91833 95293 201.1 10.0 Hydrogeo 273 91690 95417 202.5 10.0 Geotech 386/3 91833 95293 201.1 10.0 Hydrogeo 274 91570 95577 202.5 10.0 Geotech 386/3 91833 95293 201.1 10.0 Expl 274 91570 95577 202.5 10.0 Geotech 386/3 91833 95293 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 403a 90958 94737 200.3 365.7 Expl 278 91082 96231 201.0 10.0 Geotech 410a 90958 94737 200.3 365.7 Expl 282 90612 96859 200.3 10.0 Geotech 416a 90415 95118 198.2 1587.5 Expl 282 90612 96859 200.3 10.0 Geotech 501K 90588 94230 204.7 10.0 Geotech 287 87920 94226 201.3 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech 289 87891 94620 201.4 10.0 Geotech 503K 90490 94187 205.1 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 295 88207 95801 201.2 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 299 91159 94788 201.3 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 299 91159 94788 201.3 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 303 88745 95399 201.	257	89895	96130	200.9			382ЦГ	89522	95255	201.1	10.0	
263 91684 93590 202.7 10.0 Geotech 385/3Г 91829 95265 201.1 10.0 Hydrogeo 265 91445 93910 203.1 10.0 Geotech 385/µГ 91824 98257 201.1 10.0 Hydrogeo 266 91325 94070 203.8 10.0 Geotech 386/µГ 91843 95257 201.1 10.0 Hydrogeo 267 91205 94230 204.1 10.0 Geotech 386/µГ 91837 95319 201.1 10.0 Hydrogeo 269 92289 94616 201.7 10.0 Geotech 386/µГ 91837 95319 201.1 10.0 Hydrogeo 271 92049 94036 201.8 10.0 Geotech 386/µГ 91833 95293 201.1 10.0 Hydrogeo 272 91929 95097 201.6 10.0 Geotech 386/µГ 91831 95293 201.1 10.0												
265 91445 93910 203.1 10.0 Geotech 385/4\(\pi\) 92079 95438 201.1 10.0 Hydrogeo 266 91325 94070 203.8 10.0 Geotech 385\(\pi\) 91824 95257 201.1 10.0 Hydrogeo 267 91205 94230 204.1 10.0 Geotech 386/1\(\pi\) 91843 95365 201.1 10.0 Hydrogeo 269 92289 94616 201.7 10.0 Geotech 386/2\(\pi\) 91837 95319 201.1 10.0 Hydrogeo 271 92049 94036 201.8 10.0 Geotech 386/3\(\pi\) 91833 95293 201.1 10.0 Hydrogeo 272 91929 95097 201.6 10.0 Geotech 386/3\(\pi\) 91833 95293 201.1 10.0 Hydrogeo 273 91690 95417 202.5 10.0 Geotech 386/4\(\pi\) 91835 95219 201.1 10.0 Hydrogeo 274 91570 95577 202.5 10.0 Geotech 386/4\(\pi\) 91831 95293 201.1 10.0 Expl 274 91570 95577 202.5 10.0 Geotech 386/4\(\pi\) 91831 95293 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 386/4\(\pi\) 91832 95243 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 403a 90958 94737 200.3 365.7 Expl 280 90852 96538 200.6 10.0 Geotech 411a 90631 95001 199.8 1304.4 Expl 280 90852 96538 200.6 10.0 Geotech 441a 90631 95001 199.8 1304.4 Expl 282 90612 96859 200.3 10.0 Geotech 440a 89511 94855 198.9 500.0 Expl 283 87778 93439 202.1 10.0 Geotech 501K 90588 94230 204.7 10.0 Geotech 285 87849 93833 201.5 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech 287 87920 94226 201.3 10.0 Geotech 504K 90615 94031 206.5 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 295 88278 96195 201.0 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 295 88278 96195 201.0 10.0 Geotech 505K 90880 94338 203.5 10.0 Geotech 296 88207 95801 201.2 10.0 Geotech 505K 90880 9433												
266 91325 94070 203.8 10.0 Geotech 385ЦГ 91824 95257 201.1 10.0 Hydrogeo 267 91205 94230 204.1 10.0 Geotech 386/1Γ 91843 95365 201.1 10.0 Hydrogeo 269 92289 94616 201.7 10.0 Geotech 386/2Γ 91837 95319 201.1 10.0 Hydrogeo 271 92049 94036 201.8 10.0 Geotech 386/3Γ 91833 95293 201.1 10.0 Hydrogeo 272 91929 95097 201.6 10.0 Geotech 386/3Γ 91833 95293 201.1 10.0 Hydrogeo 273 91690 95417 202.5 10.0 Geotech 386/3Γ 91831 95293 201.1 10.0 Hydrogeo 274 91570 95577 202.5 10.0 Geotech 386/3Γ 91831 95293 201.1 10.0 Expl 274 91570 95577 202.5 10.0 Geotech 403a 90985 94737 200.3 365.7 Expl 278 91082 96231 201.0 10.0 Geotech 411a 90631 95001 199.8 1304.4 Expl 280 90852 96538 200.6 10.0 Geotech 416a 90415 95118 198.2 1587.5 Expl 283 87778 93439 202.1 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech 285 87849 93833 201.5 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech 291 88061 95014 201.2 10.0 Geotech 503K 90490 94187 205.1 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 503K 90490 94187 205.1 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 295 88207 95801 201.2 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 297 88278 96195 201.3 1469.1 Expl 510K 90427 94690 202.4 10.0 Geotech 302 88604 95767 201.3 929.6 Expl 511K 91168 94454 203.3 10.0 Geotech 302 88604 95767 201.3 929.6 Expl 511K 91168 94454 203.3 10.0 Geotech 303 88745 95399 201.3 1469.1 Expl 510K 9129 94469 202.4 10.0 Geotech 304 88780 95598 201.3 1020.0 Expl												
267 91205 94230 204.1 10.0 Geotech 386/1 91843 95365 201.1 10.0 Hydrogeo 269 92289 94616 201.7 10.0 Geotech 386/2 91837 95319 201.1 10.0 Hydrogeo 271 92049 94036 201.8 10.0 Geotech 386/3 91833 95293 201.1 10.0 Hydrogeo 272 91929 95097 201.6 10.0 Geotech 386/4 91835 95219 201.1 10.0 Hydrogeo 273 91690 95417 202.5 10.0 Geotech 386/4 91835 95219 201.1 10.0 Hydrogeo 274 91570 95577 202.5 10.0 Geotech 386/4 91835 95293 201.1 10.0 Expl 276 91331 95898 201.8 10.0 Geotech 403a 90958 95243 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 403a 90958 94737 200.3 365.7 Expl 278 91082 96231 201.0 10.0 Geotech 411a 90631 95001 199.8 1304.4 Expl 280 90852 96538 200.6 10.0 Geotech 440a 89511 94855 198.9 500.0 Expl 283 87778 93439 202.1 10.0 Geotech 501K 90588 87849 93833 201.5 10.0 Geotech 501K 90588 87849 93833 201.5 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech 291 88061 95014 201.2 10.0 Geotech 504K 90615 94031 206.5 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 505K 90887 39933 205.6 10.0 Geotech 294 88061 95014 201.2 10.0 Geotech 505K 90887 39933 205.6 10.0 Geotech 295 88207 95801 201.2 10.0 Geotech 505K 90387 39933 205.6 10.0 Geotech 295 88207 95801 201.2 10.0 Geotech 505K 90387 39933 205.6 10.0 Geotech 295 88278 96195 201.0 10.0 Geotech 505K 90380 94338 203.5 10.0 Geotech 296 88278 96195 201.0 10.0 Geotech 505K 90380 94338 203.5 10.0 Geotech 297 88278 96195 201.0 10.0 Geotech 505K 90380 94338 203.5 10.0 Geotech 306 88945 95599 201.3 1469.1 Expl 511K 91486 202.4 10.0 Geotech 306 88964 95767 201.3 929.6												,
271 92049 94036 201.8 10.0 Geotech 386/3Γ 91833 95293 201.1 10.0 Hydrogeo 272 91929 95097 201.6 10.0 Geotech 386/4Γ 91835 95219 201.1 10.0 Hydrogeo 273 91690 95417 202.5 10.0 Geotech 386/4Γ 91835 95293 201.1 10.0 Expl 274 91570 95577 202.5 10.0 Geotech 386/4Γ 91823 95293 201.1 10.0 Expl 274 91570 95577 202.5 10.0 Geotech 386/4Γ 91823 95293 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 403a 90958 94737 200.3 365.7 Expl 278 91082 96231 201.0 10.0 Geotech 411a 90631 95001 199.8 1304.4 Expl 280 90852 96538 200.6 10.0 Geotech 416a 90415 95118 198.2 1587.5 Expl 282 90612 96859 200.3 10.0 Geotech 440a 89511 94855 198.9 500.0 Expl 283 87778 93439 202.1 10.0 Geotech 501K 90588 94230 204.7 10.0 Geotech 285 87849 93833 201.5 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech 287 87920 94226 201.3 10.0 Geotech 503K 90490 94187 205.1 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 297 88278 96195 201.0 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 297 88278 96195 201.0 10.0 Geotech 508K 90880 94338 203.5 10.0 Geotech 299 91159 94788 200.8 10.0 Geotech 509K 91028 94469 202.4 10.0 Geotech 302 88604 95767 201.3 929.6 Expl 511K 91168 94454 203.3 10.0 Geotech 303 88745 95399 201.3 913.0 Expl 512K 91236 94694 200.6 10.0 Geotech 304 88780 95598 201.3 1020 Expl 513K 91340 94713 201.1 10.0 Geotech 306 88921 95229 201.3 504.6 Expl 515K 89704 93800 201.5 10.0 Geotech 306 88993 95628 201.3 504.6 Expl 515K 8970												
272 91929 95097 201.6 10.0 Geotech 386/4Γ 91835 95219 201.1 10.0 Hydrogeo 273 91690 95417 202.5 10.0 Geotech 386/6Γ 91831 95293 201.1 10.0 Expl 274 91570 95577 202.5 10.0 Geotech 386 4Γ 91823 95243 201.1 10.0 Expl 276 91331 95898 201.8 10.0 Geotech 403a 90958 94737 200.3 365.7 Expl 278 91082 96231 201.0 10.0 Geotech 411a 90631 95001 199.8 1304.4 Expl 280 90852 96538 200.6 10.0 Geotech 440a 89511 95001 199.8 1304.4 Expl 282 90612 96859 200.3 10.0 Geotech 440a 89511 94855 198.9 500.0 Expl 283 87778 93439 202.1 10.0 Geotech 501K 90588 94230 204.7 10.0 Geotech 287 87920 94226 201.3 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech 289 87991 94620 201.4 10.0 Geotech 503K 90490 94187 205.1 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 295 88207 95801 201.2 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 297 88278 96195 201.0 10.0 Geotech 509K 90880 94338 203.5 10.0 Geotech 299 88278 96195 201.0 10.0 Geotech 509K 90880 94338 203.5 10.0 Geotech 299 88278 96195 201.0 10.0 Geotech 509K 90480 94489 202.4 10.0 Geotech 302 88604 95767 201.3 929.6 Expl 511K 91168 94454 203.3 10.0 Geotech 306 88960 95598 201.3 1469.1 Expl 511K 91168 94454 203.3 10.0 Geotech 306 88941 95229 201.3 504.6 Expl 514K 91236 94694 200.6 10.0 Geotech 306 88941 95229 201.3 504.6 Expl 514K 91237 94546 202.5 10.0 Geotech 307 88955 95429 201.3 504.6 Expl 515K 89704 93800 201.5 10.0 Geotech 308 88993 95628 201.3 504.6 Expl 515K 89704 93800 201.5 10.0 Geotech 308 88993 95628 201.3 504.6 Expl 515K 89866 9432	269	92289	94616	201.7	10.0	Geotech	386/2Г	91837	95319	201.1	10.0	Hydrogeo
273 91690 95417 202.5 10.0 Geotech 386/5Γ 91831 95293 201.1 10.0 Expl 274 91570 95577 202.5 10.0 Geotech 386ЦГ 91823 95243 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 403a 90958 94737 200.3 365.7 Expl 278 91082 96231 201.0 10.0 Geotech 411a 9631 95001 199.8 1304.4 Expl 280 90852 96538 200.6 10.0 Geotech 416a 90415 95118 198.2 1587.5 Expl 282 90612 96859 200.3 10.0 Geotech 501K 90588 94230 204.7 10.0 Geotech 283 87789 93439 202.1 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech												
274 91570 95577 202.5 10.0 Geotech 386L F 91823 95243 201.1 10.0 Hydrogeo 276 91331 95898 201.8 10.0 Geotech 403a 90958 94737 200.3 365.7 Expl 278 91082 96231 201.0 10.0 Geotech 411a 90631 95001 199.8 1304.4 Expl 280 90852 96538 200.6 10.0 Geotech 416a 90415 95118 198.2 1587.5 Expl 282 90612 96859 200.3 10.0 Geotech 440a 89511 94855 198.9 500.0 Expl 283 87778 93439 202.1 10.0 Geotech 501K 90588 94230 204.7 10.0 Geotech 285 87849 93833 201.5 10.0 Geotech 501K 90588 94230 204.7 10.0 Geotech 287 87920 94226 201.3 10.0 Geotech 503K 90490 94187 205.1 10.0 Geotech 289 87991 94620 201.4 10.0 Geotech 504K 90615 94031 206.5 10.0 Geotech 291 88061 95144 201.2 10.0 Geotech 506K 90387 93993 205.6 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 296 88207 95801 201.2 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 297 88278 96195 201.0 10.0 Geotech 506K 90380 94338 203.5 10.0 Geotech 299 91159 94788 200.8 10.0 Geotech 509K 91028 94469 202.4 10.0 Geotech 301 88569 95569 201.3 1469.1 Expl 510K 90427 94265 204.6 10.0 Geotech 302 88604 95767 201.3 929.6 Expl 511K 91168 94454 203.3 10.0 Geotech 304 88780 95598 201.3 1020.0 Expl 513K 91340 94713 201.1 10.0 Geotech 306 88921 95229 201.3 504.6 Expl 515K 89704 93800 201.5 10.0 Geotech 307 88955 95429 201.3 504.6 Expl 515K 89704 93800 201.5 10.0 Geotech 308 88993 95628 201.3 674.7 Expl 516K 88986 94322 202.8 10.0 Geotech 308 88993 95628 201.3 674.7 Expl 516K 88986 94322 202.8 10.0 Geotech 308 88993 95628 201.3 674.7 Expl 516K 88986 9432												
276 91331 95898 201.8 10.0 Geotech 403a 90958 94737 200.3 365.7 Expl 278 91082 96231 201.0 10.0 Geotech 411a 90631 95001 199.8 1304.4 Expl 280 90852 96538 200.6 10.0 Geotech 416a 90415 95118 198.2 1587.5 Expl 282 90612 96859 200.3 10.0 Geotech 440a 89511 94855 198.9 500.0 Expl 283 87778 93433 201.5 10.0 Geotech 501K 90588 94230 204.7 10.0 Geotech 285 87849 93833 201.5 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech 287 87920 94226 201.3 10.0 Geotech 504K 90615 94031 206.5 10.0 Geotech												
278 91082 96231 201.0 10.0 Geotech 411a 90631 95001 199.8 1304.4 Expl 280 90852 96538 200.6 10.0 Geotech 416a 90415 95118 198.2 1587.5 Expl 282 90612 96859 200.3 10.0 Geotech 440a 89511 94855 198.9 500.0 Expl 283 87778 93439 202.1 10.0 Geotech 501K 90588 94230 204.7 10.0 Geotech 285 87849 93833 201.5 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech 287 87920 94226 201.3 10.0 Geotech 503K 90490 94187 205.1 10.0 Geotech 289 87991 94620 201.4 10.0 Geotech 504K 90615 94031 206.5 10.0 Geotech												
282 90612 96859 200.3 10.0 Geotech 440a 89511 94855 198.9 500.0 Expl 283 87778 93439 202.1 10.0 Geotech 501K 90588 94230 204.7 10.0 Geotech 285 87849 93833 201.5 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech 287 87920 94226 201.3 10.0 Geotech 503K 90490 94187 205.1 10.0 Geotech 289 87991 94620 201.4 10.0 Geotech 504K 90615 94031 206.5 10.0 Geotech 291 88061 95014 201.2 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech <td>278</td> <td>91082</td> <td></td> <td>201.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Expl</td>	278	91082		201.0								Expl
283 87778 93439 202.1 10.0 Geotech 501K 90588 94230 204.7 10.0 Geotech 285 87849 93833 201.5 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech 287 87920 94226 201.3 10.0 Geotech 503K 90490 94187 205.1 10.0 Geotech 289 87991 94620 201.4 10.0 Geotech 504K 90615 94031 206.5 10.0 Geotech 291 88061 95014 201.2 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 295 88207 95801 201.2 10.0 Geotech 507K 90762 94153 205.9 10.0 Geotech </td <td></td>												
285 87849 93833 201.5 10.0 Geotech 502K 89778 95100 197.1 10.0 Geotech 287 87920 94226 201.3 10.0 Geotech 503K 90490 94187 205.1 10.0 Geotech 289 87991 94620 201.4 10.0 Geotech 504K 90615 94031 206.5 10.0 Geotech 291 88061 95014 201.2 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 295 88207 95801 201.2 10.0 Geotech 507K 90762 94153 205.9 10.0 Geotech 297 88278 96195 201.0 10.0 Geotech 508K 90880 94338 203.5 10.0 Geotech </td <td></td>												
287 87920 94226 201.3 10.0 Geotech 503K 90490 94187 205.1 10.0 Geotech 289 87991 94620 201.4 10.0 Geotech 504K 90615 94031 206.5 10.0 Geotech 291 88061 95014 201.2 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 295 88207 95801 201.2 10.0 Geotech 507K 90762 94153 205.9 10.0 Geotech 297 88278 96195 201.0 10.0 Geotech 508K 90880 94338 203.5 10.0 Geotech 299 91159 94788 200.8 10.0 Geotech 509K 91028 94469 202.4 10.0 Geotech </td <td></td>												
289 87991 94620 201.4 10.0 Geotech 504K 90615 94031 206.5 10.0 Geotech 291 88061 95014 201.2 10.0 Geotech 505K 90887 93993 205.6 10.0 Geotech 293 88132 95408 201.1 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 295 88207 95801 201.2 10.0 Geotech 507K 90762 94153 205.9 10.0 Geotech 297 88278 96195 201.0 10.0 Geotech 508K 90880 94338 203.5 10.0 Geotech 299 91159 94788 200.8 10.0 Geotech 509K 91028 94469 202.4 10.0 Geotech 301 88569 95569 201.3 1469.1 Expl 510K 90427 94265 204.6 10.0 Geotech <td></td>												
293 88132 95408 201.1 10.0 Geotech 506K 90315 94074 205.9 10.0 Geotech 295 88207 95801 201.2 10.0 Geotech 507K 90762 94153 205.9 10.0 Geotech 297 88278 96195 201.0 10.0 Geotech 508K 90880 94338 203.5 10.0 Geotech 299 91159 94788 200.8 10.0 Geotech 509K 91028 94469 202.4 10.0 Geotech 301 88569 95569 201.3 1469.1 Expl 510K 90427 94265 204.6 10.0 Geotech 302 88604 95767 201.3 929.6 Expl 511K 91168 94454 203.3 10.0 Geotech 303 88745 95399 201.3 913.0 Expl 512K 91236 94694 200.6 10.0 Geotech												Geotech
295 88207 95801 201.2 10.0 Geotech 507K 90762 94153 205.9 10.0 Geotech 297 88278 96195 201.0 10.0 Geotech 508K 90880 94338 203.5 10.0 Geotech 299 91159 94788 200.8 10.0 Geotech 509K 91028 94469 202.4 10.0 Geotech 301 88569 95569 201.3 1469.1 Expl 510K 90427 94265 204.6 10.0 Geotech 302 88604 95767 201.3 929.6 Expl 511K 91168 94454 203.3 10.0 Geotech 303 88745 95399 201.3 913.0 Expl 512K 91236 94694 200.6 10.0 Geotech 304 88780 95598 201.3 1020.0 Expl 513K 91340 94713 201.1 10.0 Geotech												
297 88278 96195 201.0 10.0 Geotech 508K 90880 94338 203.5 10.0 Geotech 299 91159 94788 200.8 10.0 Geotech 509K 91028 94469 202.4 10.0 Geotech 301 88569 95569 201.3 1469.1 Expl 510K 90427 94265 204.6 10.0 Geotech 302 88604 95767 201.3 929.6 Expl 511K 91168 94454 203.3 10.0 Geotech 303 88745 95399 201.3 913.0 Expl 512K 91236 94694 200.6 10.0 Geotech 304 88780 95598 201.3 1020.0 Expl 513K 91340 94713 201.1 10.0 Geotech 306 88921 95229 201.3 504.6 Expl 514K 91227 94546 202.5 10.0 Geotech												
299 91159 94788 200.8 10.0 Geotech 509K 91028 94469 202.4 10.0 Geotech 301 88569 95569 201.3 1469.1 Expl 510K 90427 94265 204.6 10.0 Geotech 302 88604 95767 201.3 929.6 Expl 511K 91168 94454 203.3 10.0 Geotech 303 88745 95399 201.3 913.0 Expl 512K 91236 94694 200.6 10.0 Geotech 304 88780 95598 201.3 1020.0 Expl 513K 91340 94713 201.1 10.0 Geotech 306 88921 95229 201.3 504.6 Expl 514K 91227 94546 202.5 10.0 Geotech 307 88955 95429 201.3 750.0 Expl 515K 89704 93800 201.5 10.0 Geotech </td <td></td>												
301 88569 95569 201.3 1469.1 Expl 510K 90427 94265 204.6 10.0 Geotech 302 88604 95767 201.3 929.6 Expl 511K 91168 94454 203.3 10.0 Geotech 303 88745 95399 201.3 913.0 Expl 512K 91236 94694 200.6 10.0 Geotech 304 88780 95598 201.3 1020.0 Expl 513K 91340 94713 201.1 10.0 Geotech 306 88921 95229 201.3 504.6 Expl 514K 91227 94546 202.5 10.0 Geotech 307 88955 95429 201.3 750.0 Expl 515K 89704 93800 201.5 10.0 Geotech 308 88993 95628 201.3 674.7 Expl 516K 88986 94322 202.8 10.0 Geotech <td></td>												
302 88604 95767 201.3 929.6 Expl 511K 91168 94454 203.3 10.0 Geotech 303 88745 95399 201.3 913.0 Expl 512K 91236 94694 200.6 10.0 Geotech 304 88780 95598 201.3 1020.0 Expl 513K 91340 94713 201.1 10.0 Geotech 306 88921 95229 201.3 504.6 Expl 514K 91227 94546 202.5 10.0 Geotech 307 88955 95429 201.3 750.0 Expl 515K 89704 93800 201.5 10.0 Geotech 308 88993 95628 201.3 674.7 Expl 516K 88986 94322 202.8 10.0 Geotech												
304 88780 95598 201.3 1020.0 Expl 513K 91340 94713 201.1 10.0 Geotech 306 88921 95229 201.3 504.6 Expl 514K 91227 94546 202.5 10.0 Geotech 307 88955 95429 201.3 750.0 Expl 515K 89704 93800 201.5 10.0 Geotech 308 88993 95628 201.3 674.7 Expl 516K 88986 94322 202.8 10.0 Geotech		88604				Expl						
306 88921 95229 201.3 504.6 Expl 514K 91227 94546 202.5 10.0 Geotech 307 88955 95429 201.3 750.0 Expl 515K 89704 93800 201.5 10.0 Geotech 308 88993 95628 201.3 674.7 Expl 516K 88986 94322 202.8 10.0 Geotech												
307 88955 95429 201.3 750.0 Expl 515K 89704 93800 201.5 10.0 Geotech 308 88993 95628 201.3 674.7 Expl 516K 88986 94322 202.8 10.0 Geotech												
308 88993 95628 201.3 674.7 Expl 516K 88986 94322 202.8 10.0 Geotech												
309 89083 95046 200.9 513.3 Expl 517K 89234 94646 200.6 10.0 Geotech	309	89083	95046	200.9	513.3	Expl	517K	89234	94646	200.6	10.0	Geotech

	Table 2: Historical Drill Holes: Coordinates, Elevation, Depth												
Hole No	North	East	Elev	Max	Hole		Hole	North	East	Elev	Max	Hole	
11016	NOILII	Lasi	collar	Depth	Type		TIOLE	HOIE NOITH	Lasi	collar	Depth	Type	
310	89120	95244	201.0	630.1	Expl		518K	89442	94870	198.8	10.0	Geotech	
311	89155	95441	201.3	331.0	Expl		519K	89194	94925	200.6	10.0	Geotech	
313	89334	95274	200.7	302.0	Expl		520K	88306	94637	201.2	10.0	Geotech	
318	89497	95308	200.7	483.0	Expl		521K	88380	95030	201.1	10.0	Geotech	
319	89538	94893	198.3	1598.1	search		522K	88417	95226	201.3	10.0	Geotech	
320	89595	95193	197.6	2000.0	Expl		523K	89021	95785	201.0	10.0	Geotech	
321	89605	95298	197.4	820.0	Expl		524K	88625	95029	201.2	10.0	Geotech	
322	89606	95401	198.5	430.0	Expl		525K	90373	94169	205.0	10.0	Geotech	